期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Geometrical Modeling by NURBS Surface and RCS Computing by Visualization for Complex Targets
1
作者 Zhou, Yong Liu, Tiejun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第1期13-21,共9页
A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-... A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods. 展开更多
关键词 RCS Visualization computation geometrical modeling.
在线阅读 下载PDF
Dynamics analysis of planar armored cable motion in deep-sea ROV system 被引量:3
2
作者 全伟才 张竺英 张艾群 《Journal of Central South University》 SCIE EI CAS 2014年第12期4456-4467,共12页
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el... The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above. 展开更多
关键词 armored cable cable dynamics deep-sea remotely operated vehicle(ROV) resonance-zone geometrically exact model Newmark method
在线阅读 下载PDF
Parameter estimation of GTD model and RCS extrapolation based on a modified 3D-ESPRIT algorithm 被引量:3
3
作者 ZHENG Shuyu ZHANG Xiaokuan +3 位作者 ZHAO Weichen ZHOU Jianxiong ZONG Binfeng XU Jiahua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1206-1215,共10页
The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo... The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm. 展开更多
关键词 parameter estimation novel spatial smoothing scattering center geometric theory of diffraction(GTD)model radar cross section(RCS)extrapolation
在线阅读 下载PDF
Complex geometric modeling and tooth contact analysis of a helical face gear pair with arc-tooth
4
作者 MO Shuai SONG Wen-hao +3 位作者 ZHU Sheng-ping FENG Zhi-you TANG Wen-jie GAO Han-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1213-1225,共13页
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate... A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application. 展开更多
关键词 arc-tooth face gear complex geometric modeling point clouds mounting errors tooth contact analysis
在线阅读 下载PDF
Sparsity-based efficient simulation of cluster targets electromagnetic scattering
5
作者 TIAN Yuguang LIU Yixin +3 位作者 CHEN Xuan CHEN Penghui WANG Jun CHEN Junwen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期299-306,共8页
An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transform... An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method. 展开更多
关键词 geometric model of the observation scene dynamic electromagnetic scattering simulation sparsity-based method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部