载重约束的电动车辆路径问题(capacitated electric vehicle routing problem,CEVRP)是物流配送中的一种NP困难的组合优化问题,要求满足车辆的载重和电量约束条件,最小化总配送距离。提出一种混合遗传搜索算法来解决CEVRP,将其分解为两...载重约束的电动车辆路径问题(capacitated electric vehicle routing problem,CEVRP)是物流配送中的一种NP困难的组合优化问题,要求满足车辆的载重和电量约束条件,最小化总配送距离。提出一种混合遗传搜索算法来解决CEVRP,将其分解为两个子问题:载重约束的车辆路径问题和固定路径车辆充电问题。设计了双层染色体结构的编码方案,表示两个子问题的决策变量。采用Split操作生成满足载重约束的车辆路径,使用Relocate、2-Opt、2-Opt^(*)、SWAP和SWAP^(*)邻域搜索算子对其进行局部优化;提出一种基于回溯的充电策略,将合适的充电站编号插入车辆路径,以满足电量约束。本文算法与五种方法实验比较的结果表明,本文算法在多数CEVRP测试问题上能找到比其它方法更好的解,尤其适合于求解大规模的CEVRP。展开更多
文摘载重约束的电动车辆路径问题(capacitated electric vehicle routing problem,CEVRP)是物流配送中的一种NP困难的组合优化问题,要求满足车辆的载重和电量约束条件,最小化总配送距离。提出一种混合遗传搜索算法来解决CEVRP,将其分解为两个子问题:载重约束的车辆路径问题和固定路径车辆充电问题。设计了双层染色体结构的编码方案,表示两个子问题的决策变量。采用Split操作生成满足载重约束的车辆路径,使用Relocate、2-Opt、2-Opt^(*)、SWAP和SWAP^(*)邻域搜索算子对其进行局部优化;提出一种基于回溯的充电策略,将合适的充电站编号插入车辆路径,以满足电量约束。本文算法与五种方法实验比较的结果表明,本文算法在多数CEVRP测试问题上能找到比其它方法更好的解,尤其适合于求解大规模的CEVRP。