To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,pre...Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,prevention,and treatment.Generalized linear mixed models(GLMM)is an extension of linear model for categorical responses while considering the correlation among observations.Methods Magnetic resonance image(MRI)data of carotid atheroscleroticplaques were acquired from 20 patients with consent obtained and 3D thin-layer models were constructed to calculate plaque stress and strain for plaque progression prediction.Data for ten morphological and biomechanical risk factors included wall thickness(WT),lipid percent(LP),minimum cap thickness(MinCT),plaque area(PA),plaque burden(PB),lumen area(LA),maximum plaque wall stress(MPWS),maximum plaque wall strain(MPWSn),average plaque wall stress(APWS),and average plaque wall strain(APWSn)were extracted from all slices for analysis.Wall thickness increase(WTI),plaque burden increase(PBI)and plaque area increase(PAI) were chosen as three measures for plaque progression.Generalized linear mixed models(GLMM)with 5-fold cross-validation strategy were used to calculate prediction accuracy for each predictor and identify optimal predictor with the highest prediction accuracy defined as sum of sensitivity and specificity.All 201 MRI slices were randomly divided into 4 training subgroups and 1 verification subgroup.The training subgroups were used for model fitting,and the verification subgroup was used to estimate the model.All combinations(total1023)of 10 risk factors were feed to GLMM and the prediction accuracy of each predictor were selected from the point on the ROC(receiver operating characteristic)curve with the highest sum of specificity and sensitivity.Results LA was the best single predictor for PBI with the highest prediction accuracy(1.360 1),and the area under of the ROC curve(AUC)is0.654 0,followed by APWSn(1.336 3)with AUC=0.6342.The optimal predictor among all possible combinations for PBI was the combination of LA,PA,LP,WT,MPWS and MPWSn with prediction accuracy=1.414 6(AUC=0.715 8).LA was once again the best single predictor for PAI with the highest prediction accuracy(1.184 6)with AUC=0.606 4,followed by MPWSn(1. 183 2)with AUC=0.6084.The combination of PA,PB,WT,MPWS,MPWSn and APWSn gave the best prediction accuracy(1.302 5)for PAI,and the AUC value is 0.6657.PA was the best single predictor for WTI with highest prediction accuracy(1.288 7)with AUC=0.641 5,followed by WT(1.254 0),with AUC=0.6097.The combination of PA,PB,WT,LP,MinCT,MPWS and MPWS was the best predictor for WTI with prediction accuracy as 1.314 0,with AUC=0.6552.This indicated that PBI was a more predictable measure than WTI and PAI. The combinational predictors improved prediction accuracy by 9.95%,4.01%and 1.96%over the best single predictors for PAI,PBI and WTI(AUC values improved by9.78%,9.45%,and 2.14%),respectively.Conclusions The use of GLMM with 5-fold cross-validation strategy combining both morphological and biomechanical risk factors could potentially improve the accuracy of carotid plaque progression prediction.This study suggests that a linear combination of multiple predictors can provide potential improvement to existing plaque assessment schemes.展开更多
Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n produ...Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.展开更多
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金supported in part by National Sciences Foundation of China grant ( 11672001)Jiangsu Province Science and Technology Agency grant ( BE2016785)supported in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province grant ( KYCX18_0156)
文摘Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,prevention,and treatment.Generalized linear mixed models(GLMM)is an extension of linear model for categorical responses while considering the correlation among observations.Methods Magnetic resonance image(MRI)data of carotid atheroscleroticplaques were acquired from 20 patients with consent obtained and 3D thin-layer models were constructed to calculate plaque stress and strain for plaque progression prediction.Data for ten morphological and biomechanical risk factors included wall thickness(WT),lipid percent(LP),minimum cap thickness(MinCT),plaque area(PA),plaque burden(PB),lumen area(LA),maximum plaque wall stress(MPWS),maximum plaque wall strain(MPWSn),average plaque wall stress(APWS),and average plaque wall strain(APWSn)were extracted from all slices for analysis.Wall thickness increase(WTI),plaque burden increase(PBI)and plaque area increase(PAI) were chosen as three measures for plaque progression.Generalized linear mixed models(GLMM)with 5-fold cross-validation strategy were used to calculate prediction accuracy for each predictor and identify optimal predictor with the highest prediction accuracy defined as sum of sensitivity and specificity.All 201 MRI slices were randomly divided into 4 training subgroups and 1 verification subgroup.The training subgroups were used for model fitting,and the verification subgroup was used to estimate the model.All combinations(total1023)of 10 risk factors were feed to GLMM and the prediction accuracy of each predictor were selected from the point on the ROC(receiver operating characteristic)curve with the highest sum of specificity and sensitivity.Results LA was the best single predictor for PBI with the highest prediction accuracy(1.360 1),and the area under of the ROC curve(AUC)is0.654 0,followed by APWSn(1.336 3)with AUC=0.6342.The optimal predictor among all possible combinations for PBI was the combination of LA,PA,LP,WT,MPWS and MPWSn with prediction accuracy=1.414 6(AUC=0.715 8).LA was once again the best single predictor for PAI with the highest prediction accuracy(1.184 6)with AUC=0.606 4,followed by MPWSn(1. 183 2)with AUC=0.6084.The combination of PA,PB,WT,MPWS,MPWSn and APWSn gave the best prediction accuracy(1.302 5)for PAI,and the AUC value is 0.6657.PA was the best single predictor for WTI with highest prediction accuracy(1.288 7)with AUC=0.641 5,followed by WT(1.254 0),with AUC=0.6097.The combination of PA,PB,WT,LP,MinCT,MPWS and MPWS was the best predictor for WTI with prediction accuracy as 1.314 0,with AUC=0.6552.This indicated that PBI was a more predictable measure than WTI and PAI. The combinational predictors improved prediction accuracy by 9.95%,4.01%and 1.96%over the best single predictors for PAI,PBI and WTI(AUC values improved by9.78%,9.45%,and 2.14%),respectively.Conclusions The use of GLMM with 5-fold cross-validation strategy combining both morphological and biomechanical risk factors could potentially improve the accuracy of carotid plaque progression prediction.This study suggests that a linear combination of multiple predictors can provide potential improvement to existing plaque assessment schemes.
基金supported by the National Natural Science Foundation of China(31371668)the National Agricultural Science and Technology Innovation project for CAAS(CAAS-ASTIP-2016-ICR)
文摘Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.