针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作...针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。展开更多
针对配网勘灾中人工勘灾效率低下和机巡勘灾需后端分析导致灾情信息反馈不及时的问题,立足于前端实时智能检测模式,提出了基于改进YOLO-ResNet混合神经网络的配网杆塔倾倒实时检测模型。首先,改进传统YOLO-V3的损失函数,利用广义交并比(...针对配网勘灾中人工勘灾效率低下和机巡勘灾需后端分析导致灾情信息反馈不及时的问题,立足于前端实时智能检测模式,提出了基于改进YOLO-ResNet混合神经网络的配网杆塔倾倒实时检测模型。首先,改进传统YOLO-V3的损失函数,利用广义交并比(generalized intersection over union,GIoU)计算目标检测框损失,有效提升杆塔主体检测的准确性。其次,采用ResNet-50定位杆塔端点和中心线,提出一种杆塔姿态判断方法以快速计算杆塔倾斜角度。最后,研发了一种便携式设备并部署了所提模型,以实地采集的数据对模型和设备进行测试,结果表明该设备对杆塔姿态判断的整体准确率达93.48%,设备平均功耗9 W,可用于前端实时智能分析、汇总杆塔受灾情况,验证了模型和设备的有效性。展开更多
文摘针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。
文摘针对配网勘灾中人工勘灾效率低下和机巡勘灾需后端分析导致灾情信息反馈不及时的问题,立足于前端实时智能检测模式,提出了基于改进YOLO-ResNet混合神经网络的配网杆塔倾倒实时检测模型。首先,改进传统YOLO-V3的损失函数,利用广义交并比(generalized intersection over union,GIoU)计算目标检测框损失,有效提升杆塔主体检测的准确性。其次,采用ResNet-50定位杆塔端点和中心线,提出一种杆塔姿态判断方法以快速计算杆塔倾斜角度。最后,研发了一种便携式设备并部署了所提模型,以实地采集的数据对模型和设备进行测试,结果表明该设备对杆塔姿态判断的整体准确率达93.48%,设备平均功耗9 W,可用于前端实时智能分析、汇总杆塔受灾情况,验证了模型和设备的有效性。