The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ul...Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ultra-high vacuum chemical vapor deposition. These improvements are attributed to relaxation and defect annihilation in the Ge films. However, after prolonged (〉 20 s) rapid thermal annealing, tensile strain and crystal quality degenerated. This phenomenon results from intensive Si-Ge mixing at high temperature.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632103)the National Natural Science Foundation of China(Grant Nos.61036003,61176013,and 61177038)
文摘Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ultra-high vacuum chemical vapor deposition. These improvements are attributed to relaxation and defect annihilation in the Ge films. However, after prolonged (〉 20 s) rapid thermal annealing, tensile strain and crystal quality degenerated. This phenomenon results from intensive Si-Ge mixing at high temperature.
基金The project was supported by the National Natural Science Foundation of China(20903075)Program of Introducing Talents of Discipline to Universities,China(111 Project)(B08040)~~