期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于L1-GPR的船舶航向航迹控制方法研究
1
作者 李诗杰 何家伟 +2 位作者 刘佳仑 刘泰序 徐诚祺 《中国舰船研究》 北大核心 2025年第1期278-288,共11页
[目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的... [目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的航向航迹控制方法,并利用Lyapunov控制函数推导控制律,以证明闭环控制系统一致全局渐近稳定。利用GPR对船舶航行过程中的突发干扰和环境干扰进行建模,并通过与自适应律结合的方式达到快速消除干扰影响的效果。[结果]考虑突发干扰和时变扰动的航向与航迹控制仿真实验结果表明,L1-GPR控制相比传统的L1自适应控制其平均绝对航向误差可减少约9.88%和23.2%,最大绝对航向误差可减少约8.49%和12.1%,能够有效减少环境干扰影响,快速达到稳定状态。[结论]所提航向航迹控制方法能够有效抵抗航行过程中的各种干扰。 展开更多
关键词 船舶 运动控制 模型参考自适应控制 高斯过程回归 航向控制 航迹控制
在线阅读 下载PDF
基于EWT-EVO/CDO-GPR模型的三峡入库月径流预测
2
作者 徐荣华 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第2期26-32,共7页
为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法... 为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法原理,利用EVO、CDO优化GPR超参数;最后利用优化获得的最佳超参数建立EWT-EVO-GPR、EWT-CDO-GPR模型对月径流各分量进行预测,重构后得到最终预测结果,并构建基于粒子群优化(PSO)算法、遗传算法(GA)优化的EWT-PSO-GPR、EWT-GA-GPR模型,基于支持向量机(SVM)、BP神经网络的EWT-EVO-SVM、EWT-CDO-SVM、EWT-EVO-BP、EWT-CDO-BP模型,基于小波变换(WT)的WT-EVO-GPR、WT-CDO-GPR模型,基于经验模态分解(EMD)的EMD-EVO-GPR、EMD-CDO-GPR模型和EWT-GPR、EVO-GPR、CDO-GPR模型作对比分析,通过三峡2009至2022年入库月径流时序数据对各模型进行验证.结果表明:EWT-EVO-GPR、EWT-CDO-GPR模型预测的平均绝对百分比误差分别为0.689%、0.699%,决定系数均为0.9999,优于其他对比模型,具有更好的预测效果;EWT兼顾WT、EMD优势,可将月径流时序数据分解为更具规律的子分量,显著提升模型性能,分解效果优于WT、EMD;EVO、CDO对GPR超参数的寻优效果优于PSO、GA,通过超参数寻优,显著提升了GPR性能;在相同情形下,GPR预测性能要优于SVM、BP. 展开更多
关键词 月径流预测 高斯过程回归 能量谷优化算法 切尔诺贝利灾难优化算法 经验小波变换 三峡
在线阅读 下载PDF
基于GPR模型的多孔沥青混合料空隙率预估
3
作者 马志鹏 章启月 +3 位作者 张泽霖 肖一帆 邓学耀 刘祥 《科技创新与应用》 2024年第30期52-54,59,共4页
多孔沥青混合料空隙率是影响其排水功能和路用性能的关键指标之一。为实现多孔沥青混合料空隙率的快速判别,该研究以混合料级配不同筛孔尺寸通过率、油石比为自变量,通过相关性分析提取特征参数,进而基于高斯过程回归(GPR)模型建立PAC-1... 多孔沥青混合料空隙率是影响其排水功能和路用性能的关键指标之一。为实现多孔沥青混合料空隙率的快速判别,该研究以混合料级配不同筛孔尺寸通过率、油石比为自变量,通过相关性分析提取特征参数,进而基于高斯过程回归(GPR)模型建立PAC-13多孔沥青混合料空隙率预估模型,并对比分析GPR模型与多元线性回归、AdaBoost和随机森林法对多孔沥青混合料空隙率的预估准确性。结果表明,以4.75、2.36、1.18、0.6、0.3、0.15和0.075 mm的筛孔通过率,以及油石比作为模型参数的多孔沥青混合料空隙率GPR预估模型具有较好的准确性,线性拟合系数达到0.95;相比多元线性回归、AdaBoost和随机森林法,GPR模型对于多孔沥青混合料空隙率预估的适用性相对更优。 展开更多
关键词 道路工程 多孔沥青混合料 空隙率 高斯过程回归 预估模型
在线阅读 下载PDF
季节性环境影响下基于VMD-PCA-GPR方法的桥梁损伤识别
4
作者 黄杰忠 元思杰 李东升 《振动与冲击》 EI CSCD 北大核心 2024年第24期332-342,共11页
环境因素变化可能会掩盖损伤引起的结构动力特性变化,导致传统基于振动的损伤识别方法失效。为解决这一问题,该文提出了一种将变分模态分解(variational modedecomposition,VMD)、主成分分析(principal component analysis,PCA)和高斯... 环境因素变化可能会掩盖损伤引起的结构动力特性变化,导致传统基于振动的损伤识别方法失效。为解决这一问题,该文提出了一种将变分模态分解(variational modedecomposition,VMD)、主成分分析(principal component analysis,PCA)和高斯过程回归(Gaussian process regression,GPR)相融合的结构损伤识别方法。首先,利用VMD算法对频率数据进行预处理,得到分离季节性环境模式后的第1本征模态数据(IMF,);其次,采用PCA方法对IMF,数据进行分析,计算PCA残差的欧式距离;然后,以IMFi数据和相对应的PCA残差欧式距离为输人和输出,采用GPR模型学习输人-输出之间的计算规则;最后,利用训练好的GPR模型来预测剩余部分IMF,数据的PCA欧式距离,计算预测值与真实值之间的预测残差,并采用统计控制图进行损伤预警。实验室木桥和Z24桥的监测数据验证了该方法的有效性。 展开更多
关键词 损伤识别 环境变化 变分模态分解(VMD) 主成分分析(PCA) 高斯过程回归(gpr)
在线阅读 下载PDF
基于孤立森林与IDE-GPR的室内灯光照度预测模型
5
作者 刘雨婷 段培永 杨玉萍 《齐鲁工业大学学报》 CAS 2024年第6期8-16,共9页
针对室内光线照度分布的非线性、时变性问题,提出一种改进差分进化(improved differential evolution,IDE)和高斯过程回归(Gaussian process regression,GPR)融合的方法,结合孤立森林(isolationforest,iFroest)来建立室内灯光照度预测... 针对室内光线照度分布的非线性、时变性问题,提出一种改进差分进化(improved differential evolution,IDE)和高斯过程回归(Gaussian process regression,GPR)融合的方法,结合孤立森林(isolationforest,iFroest)来建立室内灯光照度预测模型。首先,通过使用孤立森林算法剔除异常数据并对其余数据进行归一化处理。然后,为克服传统差分进化(DE)算法的早熟收敛问题,提出了一种基于进化状态的概率选择策略,并将变异因子F设定为服从正态分布,以提高算法性能。同时,利用IDE算法对具备不确定量化特性的GPR模型的超参数进行寻优,从而建立最优的室内灯光照度预测模型。最后将所提出的基于孤立森林与IDE-GPR的模型与其它模型进行比较,实验结果表明该模型的R 2、δMAE、δRMSE分别为0.999、0.245 lux、0.324 lux优于其他模型,能够更准确的预测室内光环境的照明状态。 展开更多
关键词 灯光照度预测模型 高斯过程回归 超参数优化 改进差分进化算法 孤立森林
在线阅读 下载PDF
一种动态校正的AGMM-GPR多模型软测量建模方法 被引量:6
6
作者 熊伟丽 李妍君 +1 位作者 姚乐 徐保国 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第1期77-85,共9页
工业过程常常是强非线性的,并有多个工况,传统的软测量方法存在预测能力差,不能有效利用误差信息等缺点.为了有效解决这些问题,提出一种基于自适应高斯混合模型-高斯过程回归(AGMM-GPR)的多模型动态校正软测量建模方法.首先,通过贝叶斯... 工业过程常常是强非线性的,并有多个工况,传统的软测量方法存在预测能力差,不能有效利用误差信息等缺点.为了有效解决这些问题,提出一种基于自适应高斯混合模型-高斯过程回归(AGMM-GPR)的多模型动态校正软测量建模方法.首先,通过贝叶斯信息准则构建自适应高斯混合模型(AGMM),得到优化的子模型个数;然后,利用GPR方法建立各局部模型,当新的数据到来时,将其隶属于各局部模型的后验概率和预测值融合得到多模型输出;最后,为了进一步提高模型的精度,构建自回归积分滑动平均(ARIMA)模型对多模型输出进行动态反馈校正.通过数值仿真和硫回收装置(SRU)中H2S浓度的估计,验证了所提方法具有良好的预测精度和泛化性能. 展开更多
关键词 自适应 多模型 动态校正 高斯过程回归 ARIMA模型
在线阅读 下载PDF
基于高光谱结合半监督回归的肴肉硫代巴比妥酸反应物的测定
7
作者 赵丽娜 沈烨 +5 位作者 商显文 陈智扬 石吉勇 李志华 黄晓玮 郑开逸 《分析测试学报》 北大核心 2025年第4期708-713,共6页
该文以肴肉的硫代巴比妥酸反应物(TBARS)为新鲜度指标,通过高光谱结合半监督学习进行预测。在数据集中,高光谱数据为X,TBARS含量数据为y值。同时,将整个样本集合分为校正集、验证集、独立测试集。其中,校正集用于建立模型,以预测验证集... 该文以肴肉的硫代巴比妥酸反应物(TBARS)为新鲜度指标,通过高光谱结合半监督学习进行预测。在数据集中,高光谱数据为X,TBARS含量数据为y值。同时,将整个样本集合分为校正集、验证集、独立测试集。其中,校正集用于建立模型,以预测验证集和独立测试集。在校正集中,既有X,又有y的样本称为有标样本;而仅有X,没有y的样本称为无标样本。验证集和独立测试集中的每一个样本均为有标样本。验证集仅用于调节校正集建立模型的参数,不参与建模。独立测试集则不参与建模也不参与调节参数,仅用于测试模型最终的结果。文中校正集样本数为233,其中有标样本48个,无标样本185个;验证集和独立测试集样本数均为12。在建模过程中,先用校正集中的有标样本建立X和y的模型;然后用此模型预测无标样本,预估其y值。此时,校正集中所有样本均为有标样本。最后,基于校正集中的所有样本建模,构建模型用于预测。所构建的两种模型的参数存在差异,均通过验证集进行优化。结果显示:支持向量机回归(SVR)的建模效果较好,同时,SVR算法结合半监督学习可以获得较高的预测精度。在无标样本的选择中,相比基于全部无标样本的方法,基于距离法选择的无标样本可以获得更低的预测误差。 展开更多
关键词 肴肉 硫代巴比妥酸反应物(TBARS) 半监督回归 高光谱 支持向量机回归(SVR) 高斯过程回归(gpr)
在线阅读 下载PDF
鱼群算法优化组合核函数GPR的油井动液面预测 被引量:6
8
作者 李翔宇 高宪文 +1 位作者 李琨 侯延彬 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期11-15,共5页
针对抽油井动液面(DFL)检测主要依靠人工操作回声仪测试,无法实时在线检测,而单一核函数的高斯过程回归(GPR)无法明显提高预测精度和泛化能力,提出了一种人工鱼群算法(AFSA)优化组合核函数的动态高斯过程回归动液面预测模型.采用多项式... 针对抽油井动液面(DFL)检测主要依靠人工操作回声仪测试,无法实时在线检测,而单一核函数的高斯过程回归(GPR)无法明显提高预测精度和泛化能力,提出了一种人工鱼群算法(AFSA)优化组合核函数的动态高斯过程回归动液面预测模型.采用多项式函数、线性函数与径向基函数组合构建核函数,利用人工鱼群算法对核函数模型参数进行寻优,采用快速傅里叶变换(FFT)和核主元分析(KPCA)融合提取时频数据非线性特征作为模型输入,提高模型的预测精度和泛化能力.油田现场应用验证了该方法的有效性. 展开更多
关键词 油井 动液面 人工鱼群算法 组合核函数 高斯过程回归
在线阅读 下载PDF
基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演 被引量:4
9
作者 李火坤 柯贤勇 +3 位作者 黄伟 刘双平 唐义员 方静 《振动与冲击》 EI CSCD 北大核心 2023年第14期1-10,29,共11页
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自... 软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。 展开更多
关键词 软基水闸 底板脱空反演 动力学方法 高斯过程回归(gpr)代理模型 遗传-自适应惯性权重粒子群(GA-APSO)混合优化算法
在线阅读 下载PDF
基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力模型
10
作者 李启明 张鹏飞 +1 位作者 喻泽成 余波 《工程科学与技术》 北大核心 2025年第1期287-295,共9页
针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新... 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性。结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约16%和19%,概率性预测值指标负对数预测密度N_(LPD)和平均标准化对数损失M_(SLL)分别降低约15%和23%;与传统机器学习模型相比,本文模型的均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约38%和39%;根据所提出的概率模型能够建立概率密度函数曲线和置信区间,从而合理描述抗剪承载力的不确定性并校准分析传统模型的预测精度。 展开更多
关键词 钢筋混凝土柱 各向异性混合核函数 高斯过程回归 概率抗剪承载力模型 不确定性
在线阅读 下载PDF
基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究 被引量:5
11
作者 刘金凤 陈浩玮 HERBERT Ho-Ching Iu 《电子与信息学报》 EI CSCD 北大核心 2023年第3期1111-1120,共10页
锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型... 锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型。首先利用等压降放电时间分析法,提取健康因子,利用VMD对其进行分解处理,挖掘数据内在信息,降低数据复杂度,并针对不同分量,利用不同协方差函数建立GPR预测模型,有效捕获了数据的长期下降趋势和短期再生波动。利用DAIPSO算法优化GPR模型,实现核函数超参数的优化,建立了更准确的退化关系模型,最终实现剩余使用寿命的准确预测,以及不确定性表征。最后利用NASA电池数据进行验证,离线预测结果表明所提方法具有较高预测精度和泛化适应能力。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 高斯过程回归 动态自适应免疫粒子群
在线阅读 下载PDF
基于高斯过程回归和深度强化学习的水下扑翼推进性能寻优方法
12
作者 杨映荷 魏汉迪 +1 位作者 范迪夏 李昂 《上海交通大学学报》 北大核心 2025年第1期70-78,共9页
为了克服水下工作环境的复杂多变性,以及扑翼运动本身存在控制难度高、变量多、非线性特征显著等问题,提出一种直接探索环境并选取相应最优扑翼推进运动参数的寻优方法.采用拉丁超采样技术获取多维扑翼参数在实际水池中的数据样本,并基... 为了克服水下工作环境的复杂多变性,以及扑翼运动本身存在控制难度高、变量多、非线性特征显著等问题,提出一种直接探索环境并选取相应最优扑翼推进运动参数的寻优方法.采用拉丁超采样技术获取多维扑翼参数在实际水池中的数据样本,并基于该数据使用高斯过程回归(GPR)算法建立泛化工作环境的非参数模型.在不同推进性能需求下,采用深度强化学习(DRL)中的TD3算法并以奖励最大化为目标,训练得出连续区间内多参数动作最优组合解.实验结果表明,该GPR-TD3方法可以习得实验环境下扑翼推进的全定义域内最优解,包括最大速度和最大效率,并且该最优解可以在GPR中以二维形式直观验证其准确性.同时,针对任意给出的推进速度要求值,在290组真实样本前提下,新算法能够给出误差范围为0.23%~6.68%的推荐动作组合解,为真实应用提供参考. 展开更多
关键词 水下扑翼 高斯过程回归 深度强化学习 推进性能寻优
在线阅读 下载PDF
基于GPR-DE模型的CO_(2)-原油体系最小混相压力研究 被引量:5
13
作者 侯智玮 刘勇 +3 位作者 叶锋 官志锐 石丹 杨兴超 《油气地质与采收率》 CAS CSCD 北大核心 2021年第3期126-133,共8页
在对中外35个CO_(2)驱油藏注入气体组分、油藏温度、原油组分、注入气体临界温度和最小混相压力进行数据统计和处理的基础上,结合高斯过程回归(GPR)与差分进化算法(DE),建立了预测CO_(2)-原油体系最小混相压力的新模型——GPR-DE模型。... 在对中外35个CO_(2)驱油藏注入气体组分、油藏温度、原油组分、注入气体临界温度和最小混相压力进行数据统计和处理的基础上,结合高斯过程回归(GPR)与差分进化算法(DE),建立了预测CO_(2)-原油体系最小混相压力的新模型——GPR-DE模型。利用统计误差和图形误差评价GPR-DE模型的精确度,利用实验数据和敏感性分析对模型结果进行了验证,并与现有模型的预测结果进行对比。结果表明,GPR-DE模型与其他模型相比,精确度更高、应用范围更广,平均绝对相对误差仅为2.060%,标准差仅为0.0532。GPR-DE模型不仅可以预测CO_(2)-原油体系最小混相压力,还可以预测其他气体与原油体系最小混相压力。 展开更多
关键词 CO_(2) 最小混相压力 高斯过程回归 差分进化算法 gpr-DE模型
在线阅读 下载PDF
GPR、XGBoost和CatBoost模拟江西地区参考作物蒸散量的适应性研究 被引量:6
14
作者 刘小强 代智光 +3 位作者 吴立峰 张富仓 董建华 陈志月 《灌溉排水学报》 CSCD 北大核心 2021年第1期91-96,共6页
【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公... 【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公式的计算结果作为对照,建立了计算ET0的高斯过程回归(GPR)、极限梯度提升(XGBoost)和梯度提升决策树(CatBoost)模型,并分别与经验模型进行比较。【结果】各气象参数对机器学习模型模拟ET0的精度影响由大到小依次为:Rs、Tmax和Tmin、RH、U2,且采用Tmax、Tmin、Rs和RH气象参数组合的机器学习模型(RMSE<0.2mm/d)模拟ET0精度高。此外,3种机器学习模型在有限的气象数据时具有较好的适用性,且优于传统经验模型,其中GPR和CatBoost模型的预测精度高,但GPR模型稳定性最好。【结论】考虑到所研究模型调参的复杂性、预测精度和稳定性,GPR模型可作为江西地区参考作物蒸散量模拟的推荐方法。 展开更多
关键词 参考作物蒸散量 高斯过程回归 极限提升增强 梯度提升决策树 经验模型
在线阅读 下载PDF
基于协同训练的集成自适应GPR-RVM多输出模型研究 被引量:4
15
作者 李东 黄道平 +1 位作者 许翀 刘乙奇 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期100-108,共9页
污水处理过程中,由于工艺过程的复杂性、监测设备的不完备性和工作环境的恶劣性,导致重要的出水指标变量难以实现精准的监测;为此,文中提出了一种基于协同训练的集成自适应多输出软测量模型。首先,利用高斯过程回归(GPR)和相关向量机(R... 污水处理过程中,由于工艺过程的复杂性、监测设备的不完备性和工作环境的恶劣性,导致重要的出水指标变量难以实现精准的监测;为此,文中提出了一种基于协同训练的集成自适应多输出软测量模型。首先,利用高斯过程回归(GPR)和相关向量机(RVM)两种不同类别的方法建立一个异构的软测量模型;然后,利用移动窗口(MW)和卡尔曼滤波(KF)同步对模型的结构和参数进行实时优化;最后,以一污水厂为对象进行实验,对模型的预测性能和自适应性进行验证。结果表明,文中提出的方法有效地提高了软测量模型的预测性能和自适应性。 展开更多
关键词 协同训练 软测量模型 高斯过程回归 相关向量机 污水处理
在线阅读 下载PDF
基于PSO–GPR含缺陷管道失效应力预测 被引量:2
16
作者 冯超 贾澳银 +2 位作者 李陈涛 夏成宇 钱利勤 《力学与实践》 北大核心 2023年第2期260-266,共7页
传统对含缺陷管道失效应力的预测方法存在误差偏大的问题。针对该问题,利用MATLAB软件建立基于PSO–GPR(particle swarm optimization–Gaussian process regression)含缺陷管道失效应力预测模型。通过对60组含缺陷管道的试验数据进行测... 传统对含缺陷管道失效应力的预测方法存在误差偏大的问题。针对该问题,利用MATLAB软件建立基于PSO–GPR(particle swarm optimization–Gaussian process regression)含缺陷管道失效应力预测模型。通过对60组含缺陷管道的试验数据进行测试,发现预测结果与实测结果均在95%置信区间内,表明可以将均值作为预测结果。对预测结果进行分析表明:高斯过程回归的预测结果与实测结果的最小相对误差为0.003%,最大相对误差为1.205%,平均相对误差为0.319%,基于预测结果和实测结果的散点均落在曲线y=x的±1.3%误差带中,验证了高斯过程回归预测模型的准确性,为管道的工程实际应用与维修提供较为精准的判断依据。 展开更多
关键词 PSO(particle SWARM optimization)优化 高斯过程回归 预测模型 含缺陷管道
在线阅读 下载PDF
基于GPR-ARIMA-GA模型的高粘土心墙堆石坝参数反演分析 被引量:4
17
作者 王丹 张宪雷 张宏洋 《水电能源科学》 北大核心 2021年第9期94-97,85,共5页
以某粘土心墙坝为例,提出了基于GPR-ARIMA-GA模型结合有限单元法反演高粘土心墙堆石坝材料参数的方法,利用高斯过程回归非线性模型(GPR)来表征材料参数与坝体沉降量之间非线性关系,从而在搜寻真实坝体材料参数时减少了有限元程序样本计... 以某粘土心墙坝为例,提出了基于GPR-ARIMA-GA模型结合有限单元法反演高粘土心墙堆石坝材料参数的方法,利用高斯过程回归非线性模型(GPR)来表征材料参数与坝体沉降量之间非线性关系,从而在搜寻真实坝体材料参数时减少了有限元程序样本计算次数,提高了反演效率;为进一步提高GPR拟合精度,提出应用ARIMA模型对拟合误差进行修正;在构建GPR-ARIMA模型过程中,采用遗传算法(GA)来优化GPR模型超参数;在建立GPR-ARIMA模型后,二次应用GA全局搜索坝体材料参数的真实值。实例应用结果表明,该方法极大地减少了有限元程序计算量,且能够准确、快速搜索得到坝体真实材料参数,将最优材料参数代入有限元程序计算得到沉降量与实测值较为接近,验证了该方法可行、有效。 展开更多
关键词 高斯过程回归 遗传算法 ARIMA模型 粘土心墙堆石坝 反演分析
在线阅读 下载PDF
基于GGRA-GPR模型的洪涝灾害直接经济损失预评估 被引量:1
18
作者 杨爽 薛晔 《水电能源科学》 北大核心 2023年第10期67-71,共5页
随着经济发展及洪涝灾害频率和强度的增加,灾后应急管理需快速了解灾害损失,需先从致灾因子、承灾体、孕灾环境、应急能力、灾情等5个方面构建指标体系,并基于广义灰色关联分析验证其合理性,其次引入高斯过程回归模型对洪涝灾害经济损... 随着经济发展及洪涝灾害频率和强度的增加,灾后应急管理需快速了解灾害损失,需先从致灾因子、承灾体、孕灾环境、应急能力、灾情等5个方面构建指标体系,并基于广义灰色关联分析验证其合理性,其次引入高斯过程回归模型对洪涝灾害经济损失进行预评估模拟,最后运用该方法评估了京津冀城市群2010~2020年洪涝灾害直接经济损失。结果表明,对比单纯高斯过程回归与神经网络评估模型,广义灰色关联分析—高斯过程回归模型具有最优的拟合精度。 展开更多
关键词 洪涝灾害 高斯过程回归模型 广义灰色关联分析 损失预评估
在线阅读 下载PDF
距离相关系数融合GPR模型的卫星异常检测方法 被引量:9
19
作者 孙宇豪 李国通 张鸽 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第4期844-852,共9页
卫星在轨运行期间,遥测数据表现形式通常为多维时间序列。高斯过程回归(GPR)模型可以为重要的遥测参数提供动态门限,及时发现隐藏在工程阈值内的故障征兆,但是高维卫星数据使得GPR模型具有局限性。因此,为获取与多个遥测参数相关的动态... 卫星在轨运行期间,遥测数据表现形式通常为多维时间序列。高斯过程回归(GPR)模型可以为重要的遥测参数提供动态门限,及时发现隐藏在工程阈值内的故障征兆,但是高维卫星数据使得GPR模型具有局限性。因此,为获取与多个遥测参数相关的动态门限,在GPR模型的基础上,融合距离相关系数对预测变量进行选择,减少信息冗余和计算量,提高模型的可解释性,并估计模型的泛化误差以设置更合理的预测区间,提高模型的泛化能力,检测数据流的持续异常。对实际在轨卫星数据进行仿真实验,验证了距离相关系数融合GPR模型的卫星异常检测方法可以在卫星故障早期检测到数据异常,而且提高了模型的预测性能,降低了虚警率。 展开更多
关键词 卫星异常检测 高斯过程回归(gpr) 距离相关系数 变量选择 泛化误差
在线阅读 下载PDF
基于AdaBoost的GPR预测算法研究及应用 被引量:6
20
作者 吕佳朋 史贤俊 《电光与控制》 CSCD 北大核心 2020年第6期43-46,62,共5页
为了获得更高的预测精度,针对高斯过程回归(GPR)算法在具体应用中出现的依赖核函数的选择以及精度提升空间有限等问题,结合AdaBoost算法思想提出了一种基于AdaBoost.RT算法的GPR预测算法。该算法从统计学角度引入预置阈值的概念,将不同... 为了获得更高的预测精度,针对高斯过程回归(GPR)算法在具体应用中出现的依赖核函数的选择以及精度提升空间有限等问题,结合AdaBoost算法思想提出了一种基于AdaBoost.RT算法的GPR预测算法。该算法从统计学角度引入预置阈值的概念,将不同核函数的GPR算法预测结果定性分成正确和错误两部分,并经过两层训练,通过最终权值的大小反映出针对不同核函数的GPR算法的信度大小,最终融合各个核函数输出高质量的预测值。在锂电池的故障预测仿真实验中,该算法的预测相较于传统的GPR算法,平均误差下降了82.14%,证明该算法的合理性和实用性。 展开更多
关键词 ADABOOST算法 高斯过程回归 故障预测 可靠性
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部