期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于GMM-HMM的话题生命周期状态识别及趋势预测方法 被引量:3
1
作者 朱恒民 蔡婷婷 魏静 《现代情报》 CSSCI 2023年第3期26-32,41,共8页
[目的/意义]本研究对正处于演化过程中的话题进行状态识别及趋势预测,为相关部门了解话题现状,对话题进行有效监管提供科学依据。[方法/过程]首先,考虑网民情感,结合话题的新颖度和关注度,构建话题生命周期状态观测指标;其次,基于隐马... [目的/意义]本研究对正处于演化过程中的话题进行状态识别及趋势预测,为相关部门了解话题现状,对话题进行有效监管提供科学依据。[方法/过程]首先,考虑网民情感,结合话题的新颖度和关注度,构建话题生命周期状态观测指标;其次,基于隐马尔可夫模型(HMM)和高斯混合模型(GMM)的原理,提出话题生命周期状态识别及趋势预测方法;最后,选用微博话题构建数据集,设计对比实验,验证方法的有效性。[结果/结论]基于GMM-HMM的话题状态识别及趋势预测方法的F1值和准确率均高于87%,MAPE低于3.5%,相较于GaussianHMM和BP神经网络具有较大优势。 展开更多
关键词 话题生命周期状态 话题状态识别 话题趋势预测 高斯混合隐马尔可夫模型
在线阅读 下载PDF
一种改进GMM-MRF模型的海上红外目标检测 被引量:1
2
作者 仇国庆 王艳涛 +2 位作者 杨海静 魏雅婷 罗盼 《红外技术》 CSCD 北大核心 2020年第1期62-67,共6页
目前海上目标检测已在民用和军事领域得到广泛的应用。由于海水波动大、目标成像面积少、特征不显著等特点增大了目标检测难度,为了消除上述的问题,首先提出了一种基于混合高斯-马尔科夫随机场目标检测模型,该模型利用所提出的混合高斯... 目前海上目标检测已在民用和军事领域得到广泛的应用。由于海水波动大、目标成像面积少、特征不显著等特点增大了目标检测难度,为了消除上述的问题,首先提出了一种基于混合高斯-马尔科夫随机场目标检测模型,该模型利用所提出的混合高斯模型自适应调节学习率来抑制动态背景的干扰。然后,利用混合高斯模型对红外图像所计算的结果作为马尔科夫随机场的观测值,建立了马尔科夫随机场模型,可以解决混合高斯模型存在的不足。实验结果表明,本文的方法能够取得良好的检测效果。 展开更多
关键词 红外图像 海上目标 混合高斯模型 马尔科夫随机场
在线阅读 下载PDF
基于高斯混合隐马尔科夫模型与人工神经网络的紧急换道行为预测方法 被引量:9
3
作者 于扬 梁军 +3 位作者 陈龙 陈小波 朱宁 华国栋 《中国机械工程》 EI CAS CSCD 北大核心 2020年第23期2874-2882,2890,共10页
为了有效降低因驾驶员紧急换道行为而诱发的交通事故,提高道路交通事故链阻断效率,提出一种基于高斯混合隐马尔科夫模型(GMM-HMM)和人工神经网络(ANN)的紧急换道行为预测方法。首先利用GMM-HMM对车辆行驶状态以及驾驶行为连续观察序列... 为了有效降低因驾驶员紧急换道行为而诱发的交通事故,提高道路交通事故链阻断效率,提出一种基于高斯混合隐马尔科夫模型(GMM-HMM)和人工神经网络(ANN)的紧急换道行为预测方法。首先利用GMM-HMM对车辆行驶状态以及驾驶行为连续观察序列进行换道意图辨识,采用ANN预测下一时段的驾驶行为,再预测换道过程中的横向加速度变化率,从而判断紧急换道的危险程度。驾驶员在环仿真实验及实车实验结果表明,该方法预测避险成功率达92.83%,实验避险成功率达90.32%。该方法能有效地对紧急换道行为进行提前警告与干预。 展开更多
关键词 换道行为预测 高斯混合隐马尔可夫模型 人工神经网络 道路交通事故链阻断
在线阅读 下载PDF
基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测 被引量:3
4
作者 廉玉波 凌和平 +2 位作者 王钧斌 潘华 谢朝 《汽车工程》 EI CSCD 北大核心 2023年第1期139-146,共8页
随着电动汽车在我国的发展,动力电池的安全性能成为评价电动汽车综合产品力的重要指标,其中动力电池热失控的检测对乘车人员的安全至关重要。针对传统热失控检测方法在实际应用中难以准确做出判断的问题,从电池传感器直接观测的电压、... 随着电动汽车在我国的发展,动力电池的安全性能成为评价电动汽车综合产品力的重要指标,其中动力电池热失控的检测对乘车人员的安全至关重要。针对传统热失控检测方法在实际应用中难以准确做出判断的问题,从电池传感器直接观测的电压、电流、时间等参数中提取状态特征向量,使用混合高斯模型对特征进行最优化筛选。分别对动力电池不同的安全状态评估其混合概率分布,通过BW方法建立隐马尔可夫模型,利用维特比算法对当前观测序列计算相似概率来判断当前电池的健康状况。实验结果表明,隐马尔可夫模型对动力电池热失控的识别较常见时序检测方法更为准确,可以实现在无需电化学仪器检测的前提下达到初步热失控风险检测的目的,提升安全检测效率,降低检测成本。 展开更多
关键词 电池热失控 实时预警 隐马尔科夫模型 混合高斯模型 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部