期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Prediction and scheduling of multi-energy microgrid based on BiGRU self-attention mechanism and LQPSO
1
作者 Yuchen Duan Peng Li Jing Xia 《Global Energy Interconnection》 EI CSCD 2024年第3期347-361,共15页
To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirection... To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirectional gated recurrent neural network(BiGRU)to explore the time-series characteristics of solar power output and consider the influence of different time nodes on the prediction results.Subsequently,an improved quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the hyperparameters of the combined prediction model.The final proposed LQPSO-BiGRU-self-attention hybrid model can predict solar power more effectively.In addition,considering the coordinated utilization of various energy sources such as electricity,hydrogen,and renewable energy,a multi-objective optimization model that considers both economic and environmental costs was constructed.A two-stage adaptive multi-objective quantum particle swarm optimization algorithm aided by a Lévy flight,named MO-LQPSO,was proposed for the comprehensive optimal scheduling of a multi-energy microgrid system.This algorithm effectively balances the global and local search capabilities and enhances the solution of complex nonlinear problems.The effectiveness and superiority of the proposed scheme are verified through comparative simulations. 展开更多
关键词 MICROGRID Bidirectional gated recurrent unit Self-attention Lévy-quantum particle swarm optimization Multi-objective optimization
在线阅读 下载PDF
Price prediction of power transformer materials based on CEEMD and GRU
2
作者 Yan Huang Yufeng Hu +2 位作者 Liangzheng Wu Shangyong Wen Zhengdong Wan 《Global Energy Interconnection》 EI CSCD 2024年第2期217-227,共11页
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the... The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction. 展开更多
关键词 Power transformer material Price prediction Complementary ensemble empirical mode decomposition gated recurrent unit Empirical wavelet transform
在线阅读 下载PDF
基于DDQN改进方法的“斗地主”策略
3
作者 孔燕 吴晓聪 +1 位作者 芮烨锋 史鸿远 《信息技术》 2024年第5期66-72,80,共8页
基于当前一些已有方法在牌类博弈中训练时间长、动作空间大、胜率低等问题,提出了针对DDQN算法网络架构、编码方式的改进方法。采用二进制对手牌特征进行编码,采用手牌拆分的方法把神经网络分为主牌神经网络和副牌神经网络,并且增加GRU... 基于当前一些已有方法在牌类博弈中训练时间长、动作空间大、胜率低等问题,提出了针对DDQN算法网络架构、编码方式的改进方法。采用二进制对手牌特征进行编码,采用手牌拆分的方法把神经网络分为主牌神经网络和副牌神经网络,并且增加GRU神经网络处理序列动作。经实验表明,该算法训练时间比传统DQN算法缩短了13%,在“地主”和“农民”位置上的平均胜率为70%和75%,高于DQN算法的28%和60%,证明了改进算法在上述部分指标方面的优势。 展开更多
关键词 深度强化学习 Double deep Q-learning 计算机博弈 Gate recurrent unit神经网络 大规模离散动作空间
在线阅读 下载PDF
基于时间序列和GRU的滑坡位移预测 被引量:14
4
作者 鄢好 陈骄锐 +1 位作者 李绍红 吴礼舟 《人民长江》 北大核心 2021年第1期102-107,133,共7页
近些年随着深度学习的兴起,长短时间记忆网络(LSTM)常应用于滑坡位移的预测。GRU(Gated Recurrent Unit)是LSTM的一种改良,为此提出了一种联合时间序列和GRU神经网络来预测滑坡位移的方法。采用移动平均法将滑坡总位移曲线分解为趋势项... 近些年随着深度学习的兴起,长短时间记忆网络(LSTM)常应用于滑坡位移的预测。GRU(Gated Recurrent Unit)是LSTM的一种改良,为此提出了一种联合时间序列和GRU神经网络来预测滑坡位移的方法。采用移动平均法将滑坡总位移曲线分解为趋势项位移和周期项位移,灰色Verhulst模型描述趋势项变化;考虑降雨和库水位等对滑坡位移的影响,应用Python语言搭建了一个3层GRU网络和全连接层(Dense)网络,以预测周期项变化,并用三峡库区八字门滑坡监测点ZG111位移监测数据对该方法进行了验证。结果表明:该方法相较于GRNN模型更能有效地利用历史信息,预测效果得到明显提高,可为滑坡预测提供重要的参考。 展开更多
关键词 滑坡位移预测 时间序列 灰色VERHULST模型 gated recurrent unit 八字门滑坡
在线阅读 下载PDF
基于注意力GRU算法的滚动轴承剩余寿命预测 被引量:35
5
作者 姚德臣 李博阳 +2 位作者 刘恒畅 姚娟娟 皮雁南 《振动与冲击》 EI CSCD 北大核心 2021年第17期116-123,共8页
针对旋转机械装置中滚动轴承剩余寿命随时间变化趋势难以准确预测问题,充分利用循环神经网络(recurrent neural networks,RNN)对时间序列数据的处理能力,提出一种融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)算... 针对旋转机械装置中滚动轴承剩余寿命随时间变化趋势难以准确预测问题,充分利用循环神经网络(recurrent neural networks,RNN)对时间序列数据的处理能力,提出一种融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)算法应用于滚动轴承剩余寿命预测领域之中。该方法首先从原始振动信号中提取多种时域特征构建数据集,并将数据集进行归一化处理,其次,将注意力机制(attention mechanism)引入GRU(gated recurrent unit)模型之中,最后,将特征数据集划分为训练集和测试集,训练集用于训练模型,确定最优模型参数,测试集用于对模型效果进行评估。试验结果表明,改进后的GRU模型可有效预测不同类型的滚动轴承剩余寿命随时间变化趋势,为滚动轴承零件剩余使用寿命预测提供了一种新思路。 展开更多
关键词 滚动轴承 特征数据集 GRU(gated recurrent unit)算法 注意力机制 寿命预测
在线阅读 下载PDF
Prediction of landslide displacement with dynamic features using intelligent approaches 被引量:12
6
作者 Yonggang Zhang Jun Tang +4 位作者 Yungming Cheng Lei Huang Fei Guo Xiangjie Yin Na Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期539-549,共11页
Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.... Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement. 展开更多
关键词 Landslide displacement prediction Artificial intelligent methods gated recurrent unit neural network CEEMDAN Landslide monitoring
在线阅读 下载PDF
Carbon Price Forecasting Approach Based on Multi-Scale Decomposition and Transfer Learning
7
作者 Xiaolong Zhang Yadong Dou +2 位作者 Jianbo Mao Wensheng Liu Hao Han 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期242-255,共14页
Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n... Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity. 展开更多
关键词 carbon emission trading price forecasting transfer learning gated recurrent unit
在线阅读 下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
8
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部