期刊文献+
共找到328篇文章
< 1 2 17 >
每页显示 20 50 100
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别
1
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断
2
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
3
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于帝王蝶算法的CNN-GRU-LightGBM模型短期风电功率预测 被引量:1
4
作者 向阳 刘亚娟 +2 位作者 孙志伟 张效宁 卢建谋 《太阳能学报》 北大核心 2025年第1期105-114,共10页
风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率... 风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率预测模型。首先,分别建立CNN-GRU和LightGBM的风电功率预测模型,利用方差倒数法将两个模型加权组合为CNN-GRU-LightGBM复合模型;为优化模型中的连续参数,使用MBO对模型进行超参数优化。最后,选取珠海某海上风电场的短期风电功率数据对所提方法与已有预测方法进行对比,实验结果表明,该模型结合了CNN-GRU、LightGBM等模型的优点,预测误差更小,预测精度更高,拥有更强的季节普适性。 展开更多
关键词 风电功率预测 卷积神经网络 门控循环单元 梯度提升学习 帝王蝶算法
在线阅读 下载PDF
基于GRU-NN预测模型的压电作动器MPC-KAN控制方法
5
作者 郭辰星 李自成 徐瑞瑞 《压电与声光》 北大核心 2025年第1期157-162,171,共7页
为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型... 为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型预测控制(MPC)的输出。首先,根据线性化模型选择GRU-NN的训练输入特征,并训练该网络。然后,为了提高优化效果和缩短优化时间,将麻雀搜索算法(SSA)用作MPC优化器,并建立Kolmogorov-Arnold网络(KAN)以替代SSA优化。该方法的有效性在PEAs平台上得到验证,与传统方法相比,控制精度提高了约30%。 展开更多
关键词 压电陶瓷作动器 高精度跟踪 模型预测控制 gru网络 KAN网络
在线阅读 下载PDF
基于WOA-GRU模型的煤泥浮选智能控制研究
6
作者 窦治衡 王然风 +3 位作者 秦新凯 柴宇青 李品钰 刘舒通 《工矿自动化》 北大核心 2025年第4期153-159,168,共8页
由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存... 由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA-GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA-GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA-GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO-GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。 展开更多
关键词 煤泥浮选 系统辨识 模型预测控制 鲸鱼优化算法 门控循环单元 煤泥灰分
在线阅读 下载PDF
基于改进BiGRU-TCN混合模型的风机轴承温度异常预警方法
7
作者 张佳 关启学 姜月秋 《沈阳理工大学学报》 2025年第4期13-20,29,共9页
为解决风力发电机轴承温度预测准确性较低而影响故障预警系统性能的问题,提出一种基于改进双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和时间卷积网络(temporal convolutional network,TCN)的风机轴承温度异常预警方法... 为解决风力发电机轴承温度预测准确性较低而影响故障预警系统性能的问题,提出一种基于改进双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和时间卷积网络(temporal convolutional network,TCN)的风机轴承温度异常预警方法(BiGRU-TCN)。首先采用bin方法对噪声数据进行清洗,减小其对预测模型准确性的干扰;然后引入TCN捕捉序列依赖性,并结合BiGRU建立融合模型,对清洗后数据进行特征提取,再加入自注意力机制,提高模型在数据波动幅度较大时的预测能力;最后采用滑动窗口算法分析预测值与真实值之间的残差,设置故障预警阈值。实验结果显示:相较于其他常见模型,本文模型预测结果的平均绝对误差(MAE)平均低0.571,均方误差(MSE)平均低3.601;基于本文模型设置的预警方式实现了在异常发生前3天预警,为风电场的运维管理提供了有力支持。 展开更多
关键词 风机轴承 温度预警 数据清洗 时间卷积网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
Attention-GRU在PM_(2.5)浓度预测中的应用研究
8
作者 张黎鹏 刘庆杰 《现代信息科技》 2025年第4期74-79,86,共7页
针对PM_(2.5)浓度预测问题,选取北京市顺义监测站的每小时空气质量数据及其对应的气象数据作为研究样本,提出了一种融合多头注意力机制的GRU模型(Attention-GRU)。该模型利用门控循环单元(GRU)捕捉时间序列中与目标特征的长期依赖关系,... 针对PM_(2.5)浓度预测问题,选取北京市顺义监测站的每小时空气质量数据及其对应的气象数据作为研究样本,提出了一种融合多头注意力机制的GRU模型(Attention-GRU)。该模型利用门控循环单元(GRU)捕捉时间序列中与目标特征的长期依赖关系,并通过多头注意力策略来优化多特征与PM_(2.5)浓度的权重分布,关注影响较大的特征因素,从而提升预测的准确性。实验结果表明,与传统方法相比,融合多头注意力机制的GRU模型在均方根误差(RMSE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等指标上表现优异,验证了该方法的有效性和优越性。 展开更多
关键词 多头注意力机制 PM_(2.5)预测 门控循环单元(gru) 空气质量
在线阅读 下载PDF
基于MSRC-BiGRU-SA的人体活动识别
9
作者 芦平 于增辉 华国环 《中国电子科学研究院学报》 2025年第1期25-32,共8页
针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据... 针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据的多尺度空间和时间特征并有效融合原始数据的特征信息,增强特征的表达能力和鲁棒性;其次,利用BiGRU模块充分捕捉时间序列的前后依赖关系;最后,通过SA模块增强模型对复杂活动关键特征的捕捉能力以提升分类性能。实验结果表明,在公开数据集上,该模型对复杂活动的分类准确率达到97.50%,相较于原始CNN-BiGRU模型提升了5.77%,与现有先进模型相比,具有更好的识别效果。 展开更多
关键词 复杂人体活动识别 卷积神经网络 双向门控循环单元 可穿戴传感器 深度学习
在线阅读 下载PDF
结合共注意网络的深度BiGRU和DPCS情感分析模型
10
作者 陈漫漫 于莲芝 《电子科技》 2025年第5期22-30,共9页
针对一词多义现象和情感分析模型无法提取全面深度语义特征等问题,文中提出结合共注意网络的深度BiGRU(Bidirectional Gated Recurrent Unit)和DPCS(Deep Convolutional Attention Networks)情感分析模型。使用RoBERTaRoBERTa(Robustly ... 针对一词多义现象和情感分析模型无法提取全面深度语义特征等问题,文中提出结合共注意网络的深度BiGRU(Bidirectional Gated Recurrent Unit)和DPCS(Deep Convolutional Attention Networks)情感分析模型。使用RoBERTaRoBERTa(Robustly optimized BERT approach)获取文本的动态语义表征,通过并行双通道网络的深度BiGRU与DPCS分别提取深层次文本上下文语义特征和重要文本局部特征,利用基于共注意网络的特征融合将不同方面文本语义特征进行深度融合以获取更全面深层次的全局语义特征。为验证所提模型的有效性,在电影和线上购物评论数据集上进行实验对比。实验结果表明,所提模型的准确率和F1均高于其他模型,在两个数据集上准确率分别达到了93.05%和94.67%。 展开更多
关键词 文本情感分析 RoBERTa 双向门控循环神经网络 自注意力机制 卷积神经网络 动态共注意力网络 特征融合 全局语义特征
在线阅读 下载PDF
基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型
11
作者 王运明 李明阳 +1 位作者 陈梦华 常振臣 《铁道科学与工程学报》 北大核心 2025年第5期2367-2379,共13页
牵引电机温度预测在动车组牵引电机状态评估和日常维护中具有重要作用。针对现有时序预测模型提取牵引电机时序数据的特征不充分,导致模型预测精度不高的问题,提出一种基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型,通过更深层次... 牵引电机温度预测在动车组牵引电机状态评估和日常维护中具有重要作用。针对现有时序预测模型提取牵引电机时序数据的特征不充分,导致模型预测精度不高的问题,提出一种基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型,通过更深层次地提取数据的时空特征来预测牵引电机的温度。该模型提出了多通道卷积神经网络(multi-channel convolutional neural networks, MultiCNN)的空间特征提取模块,多尺度地获取牵引电机数据的空间特征,增强特征的表征能力;设计了GRU(gated recurrent unit, GRU)堆叠的时间特征提取模块,采用门控循环单元捕捉数据的长期依赖关系,提取牵引电机数据的时间特征,更准确地预测温度的动态变化;引入改进的时序注意力机制模块(improved temporal attention,ITA),聚焦时空特征中的关键信息,进一步提升模型对重要特征的识别能力。利用动车组实际运行数据制作了数据集,并在多种预测场景下进行了实验测试。实验结果表明,在预测输出步长为5、10、15、20 min的4种场景下,MultiCNN-GRUITA模型在MAE和MSE方面均表现出明显的优势,相比于LSTM、GRU、SVR、ARIMA模型,MAE和MSE指标降低了41.03%和65.32%以上;在不同预测步长下,MultiCNN-GRU-ITA模型的温度预测曲线与实际值具有很高的拟合度,该模型能有效捕捉牵引电机的温度变化趋势,可为构建高精确性的牵引电机故障预测与健康评估系统提供模型支撑。 展开更多
关键词 牵引电机 温度预测 多通道卷积神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于CNN-BiGRU-Attention的PRI调制模式识别
12
作者 青松 《航天电子对抗》 2025年第2期31-37,共7页
提出了一种基于CNN-BiGRU-Attention的雷达PRI调制模式识别新方法。该方法结合卷积神经网络和双向门控循环单元神经网络,有效提取PRI序列的局部特征和时序特征,并引入注意力机制关注PRI序列中的关键脉冲信息,从而提高网络识别性能。通... 提出了一种基于CNN-BiGRU-Attention的雷达PRI调制模式识别新方法。该方法结合卷积神经网络和双向门控循环单元神经网络,有效提取PRI序列的局部特征和时序特征,并引入注意力机制关注PRI序列中的关键脉冲信息,从而提高网络识别性能。通过仿真实验证明,在脉冲丢失和脉冲干扰环境下,此方法具有较高的识别准确度。 展开更多
关键词 PRI调制 门控循环单元神经网络 模式识别
在线阅读 下载PDF
基于GRU-1DFCN的硝化机搅拌系统故障诊断研究
13
作者 孙俪榕 孙琤 《工程建设与设计》 2025年第7期55-58,共4页
为提升涉火企业现场对硝化机等设备的维保效率,论文提出一种基于GRU-1DFCN的硝化机搅拌系统故障诊断方法。首先,采用GRU和1DFCN的并列式结构构建特征提取器;其次,采用Concat方法融合故障特征;最后,利用多分类算法Softmax实现对搅拌系统... 为提升涉火企业现场对硝化机等设备的维保效率,论文提出一种基于GRU-1DFCN的硝化机搅拌系统故障诊断方法。首先,采用GRU和1DFCN的并列式结构构建特征提取器;其次,采用Concat方法融合故障特征;最后,利用多分类算法Softmax实现对搅拌系统关键部件不同位置和不同故障类型的识别。故障诊断实例结果表明,论文模型在4种负载下的平均故障诊断准确率可以达到99.26%,相对于GRU、1DFCN、LSTM、CNN-LSTM、BP、SVM、KNN模型分别提高了0.57%、0.49%、3.5%、2.5%、16.14%、18.73%、19.31%,并且具有良好的泛化性和抗噪性能。 展开更多
关键词 故障诊断 门控循环单元 全卷积神经网络 硝化机搅拌系统
在线阅读 下载PDF
融合GSDE与GRU的计算机网络安全入侵检测模型研究
14
作者 姚孝生 《重庆科技大学学报(自然科学版)》 2025年第1期99-106,共8页
为了提升计算机网络安全防护能力,提出了一种融合广义状态相关探索(GSDE)与门控循环单元(GRU)的计算机网络安全入侵检测模型。模拟网络入侵过程,设定计算机网络安全入侵检测标准。动态采集计算机网络流量、用户行为及网络日志等运行数据... 为了提升计算机网络安全防护能力,提出了一种融合广义状态相关探索(GSDE)与门控循环单元(GRU)的计算机网络安全入侵检测模型。模拟网络入侵过程,设定计算机网络安全入侵检测标准。动态采集计算机网络流量、用户行为及网络日志等运行数据,通过GSDE与GRU算法的融合和迭代学习提取计算机网络运行特征,采用特征匹配的方法检测计算机网络入侵状态。测试结果显示,不同工况下的优化设计模型入侵检测正确率比传统模型高,且其入侵强度检测误差平均值为0.004,说明该模型的检测性能更佳。 展开更多
关键词 GSDE算法 gru算法 计算机网络 安全入侵 入侵检测模型
在线阅读 下载PDF
基于BiTCN-BiGRU-AM的光伏电站输出功率预测
15
作者 袁晨曦 《上海节能》 2025年第3期422-430,共9页
随着光伏发电在全球能源结构中的比重不断增加,精确预测光伏电站输出功率成为提高电力系统稳定性和优化能源调度的关键。研究了一种新的组合深度学习模型,结合了双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)... 随着光伏发电在全球能源结构中的比重不断增加,精确预测光伏电站输出功率成为提高电力系统稳定性和优化能源调度的关键。研究了一种新的组合深度学习模型,结合了双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和注意力机制(attention mechanism,AM),从而捕捉时间序列数据的长期依赖性和复杂特征,旨在提高光伏电站输出功率预测的精确性和鲁棒性。通过横纵比较分析6种模型在4个不同季节背景,以及不同地区数据预测结果,在多个评价指标下的表现,全面评估了模型的预测准确性、稳定性和鲁棒性。该研究结果表明,该模型在预测准确性和稳定性方面表现良好,对光伏电站输出功率预测领域的发展具有积极的贡献。 展开更多
关键词 光伏电站输出功率预测 双向时间卷积网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:8
16
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:6
17
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于COMGRU的AUV航路轨迹预测方法 被引量:1
18
作者 徐鹏 徐东 +2 位作者 李腾涛 赵宏瑞 赵佳媛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1384-1390,共7页
针对采用神经网络预测自主水下机器人航迹存在滞后性的问题,本文提出一种基于信息压缩的改进门控循环神经网络,用于水下自主机器人航路多步轨迹预测。该算法将水下自主机器人航行轨迹附近的障碍物位置信息、海流信息以及时空轨迹信息共... 针对采用神经网络预测自主水下机器人航迹存在滞后性的问题,本文提出一种基于信息压缩的改进门控循环神经网络,用于水下自主机器人航路多步轨迹预测。该算法将水下自主机器人航行轨迹附近的障碍物位置信息、海流信息以及时空轨迹信息共同构成的地理位置信息进行数据压缩处理,作为本文预测网络的输入,以提高网络训练效率。实验验证该算法减少了水下自主机器人航迹多步预测的滞后性且具有较高的准确率。 展开更多
关键词 水下自主机器人 航迹预测 门控循环神经网络 数据压缩 时空轨迹 多步预测 滞后性
在线阅读 下载PDF
基于GRU神经网络的电动汽车IGBT模块剩余寿命预测研究 被引量:1
19
作者 李新宇 孟子民 +1 位作者 盛光鸣 刘志峰 《中国测试》 CAS 北大核心 2024年第11期25-32,共8页
为获取老旧电动汽车中拆解的绝缘栅双极型晶体管(IGBT)模块在再制造时的剩余寿命,提出经典循环神经网络的变体,即GRU神经网络的IGBT模块剩余寿命预测模型。分析IGBT模块的内部结构及老化失效机理,明确老化失效的具体形式,结合IGBT模块... 为获取老旧电动汽车中拆解的绝缘栅双极型晶体管(IGBT)模块在再制造时的剩余寿命,提出经典循环神经网络的变体,即GRU神经网络的IGBT模块剩余寿命预测模型。分析IGBT模块的内部结构及老化失效机理,明确老化失效的具体形式,结合IGBT模块功率循环试验的老化数据,确定通态饱和压降作为模块老化失效特征量。通过试验构建最优参数的GRU神经网络剩余寿命预测模型,完成对老化失效特征量的预测,并与同样是经典循环神经网络另一种变体LSTM网络预测模型进行对比。结果表明:经过优化参数的GRU网络模型的均方根误差为0.0046,平均绝对误差为0.0041,决定系数为99.96%,相对LSTM网络精度更高,更适合所选IGBT模块的剩余寿命预测,同时检测的时间成本更低,更能提高IGBT模块再制造时的检测与生产效率。 展开更多
关键词 绝缘栅双极型晶体管 gru 神经网络 剩余寿命预测
在线阅读 下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测 被引量:1
20
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(ARIMA) 广义的自回归条件异方差模型(GARCH) 门控循环单元(gru)
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部