期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Delivery of inert gas through a vertical borehole using inert gas generator: A theoretical study
1
作者 Rickard Hansen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期501-510,共10页
The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,boreh... The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation. 展开更多
关键词 GAG Inert gas CONDENSATION Pressure loss Choked flow gas velocity BOREHOLE Heat transfer
在线阅读 下载PDF
Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal 被引量:4
2
作者 Jian Kuo Lei Dongji +2 位作者 Fu Xuehai Zhang Yugui Li Hengle 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期607-613,共7页
The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree ... The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P. 展开更多
关键词 Electrostatic field Tectonic coal Depth of adsorption potential well Joule heating effect Initial velocity of gas diffusion
在线阅读 下载PDF
Effect of bubbles addition on teetered bed separation 被引量:2
3
作者 Ni Chao Xie Guangyuan +3 位作者 Liu Bo Bu Xiangning Peng Yaoli Sha Jie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期835-841,共7页
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd... To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity. 展开更多
关键词 Teetered bed separator Fine coal BUBBLES Superficial water velocity Superficial gas velocity
在线阅读 下载PDF
Spray Characteristics Study of Combined Trapezoid Spray Tray
4
作者 He Liang Li Chunli +1 位作者 Liu Jidong Xie Zhenshan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期104-110,共7页
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest... The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter. 展开更多
关键词 CTST spray angle gas velocity distribution density average flow velocity of liquid sheet droplet size
在线阅读 下载PDF
The Influence of Feeding Method on Fluidization Behavior of Fixed Fluidized Bed
5
作者 Ren Shihong Mao Anguo Wei Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期13-18,共6页
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas v... An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed. 展开更多
关键词 feeding method fixed fluidized bed fluidization behavior bed density operating gas velocity
在线阅读 下载PDF
Numerical study of atmospheric-pressure argon plasma jet propagating into ambient nitrogen 被引量:1
6
作者 Yuanyuan JIANG Yanhui WANG +2 位作者 Yamin HU Jiao ZHANG Dezhen WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期17-28,共12页
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas vel... A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane,the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds,whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed. 展开更多
关键词 atmospheric-pressure argon plasma jet gas flow velocity 2D simulation propagation characteristics reactive species
在线阅读 下载PDF
Wellbore drift flow relation suitable for full flow pattern domain and full dip range 被引量:1
7
作者 LOU Wenqiang WANG Zhiyuan +4 位作者 LI Pengfei SUN Xiaohui SUN Baojiang LIU Yaxin SUN Dalin 《Petroleum Exploration and Development》 CSCD 2022年第3期694-706,共13页
Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 gro... Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data. 展开更多
关键词 wellbore pressure control multi-phase flow drift flow model gas drift velocity distribution coefficient
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部