期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
1
作者 杨松铭 王玫 《桂林理工大学学报》 北大核心 2025年第2期251-259,共9页
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神... 为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。 展开更多
关键词 检测 SimAM 卷积神经网络 特征金字塔 动态区域感知卷积 梅尔频率系数(MFCC)
在线阅读 下载PDF
梅尔频率倒谱耦合神经网络的焊接缺陷检测
2
作者 金晖 金传伟 +2 位作者 刘俊勇 刘利民 刘念 《计算机工程与设计》 北大核心 2016年第7期1911-1915,共5页
当前焊接图像缺陷检测技术因依赖焊接几何特征缺陷,对微小缺陷中黑暗边缘的噪声较为敏感,导致其定位精度不佳,为此提出一种梅尔频率倒谱耦合神经网络特征匹配的焊接缺陷检测算法。利用DCT(discrete cosine transform)与Zigzag机制,将焊... 当前焊接图像缺陷检测技术因依赖焊接几何特征缺陷,对微小缺陷中黑暗边缘的噪声较为敏感,导致其定位精度不佳,为此提出一种梅尔频率倒谱耦合神经网络特征匹配的焊接缺陷检测算法。利用DCT(discrete cosine transform)与Zigzag机制,将焊接图像排列成1D信号数组;将1D信号分割为多个帧,构造窗口函数,增强相邻帧之间的连续性,引入倒谱技术,查询1D信号的稳定特性,提取其梅尔频率倒谱系数;定义两个正交多项式,建立多项式系数计算模型,提取多项式系数。基于神经网络训练,对提取特征与数据库特征进行匹配,完成缺陷检测。实验结果表明,与当前焊接缺陷检测技术相比,该算法的定位精度高达90%,鲁棒性更强,不受噪声影响。 展开更多
关键词 焊接图像 缺陷检测 梅尔频率 神经网络 窗口函数 多项式系数
在线阅读 下载PDF
采用复倒谱峰值滤波GMM识别混响语音
3
作者 孔荣 吴迪 +3 位作者 廖启鹏 朱俊杰 周强 陶智 《计算机工程与应用》 CSCD 2014年第15期191-193,203,共4页
针对混响环境下语音识别系统性能急剧下降问题,提出一种采用复倒谱峰值滤波GMM识别混响语音的方法。通过训练纯净语音的MFCC特征参数构建高斯混合模型,在识别混响语音前引入复倒谱峰值滤波器以减少混响引起的语音失真而提高混响环境下... 针对混响环境下语音识别系统性能急剧下降问题,提出一种采用复倒谱峰值滤波GMM识别混响语音的方法。通过训练纯净语音的MFCC特征参数构建高斯混合模型,在识别混响语音前引入复倒谱峰值滤波器以减少混响引起的语音失真而提高混响环境下语音识别率。经实验验证,该方法避免了在现实条件下准确估计房间冲击响应函数的麻烦,降低了计算难度,提高了混响环境下至少4%的系统识别率。 展开更多
关键词 高斯混合模型 Mel频率系数(MFCC)
在线阅读 下载PDF
基于MFCC相似度和谱熵的端点检测算法 被引量:6
4
作者 邓瑞 肖纯智 高勇 《现代电子技术》 2013年第21期67-69,共3页
为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离... 为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离与谱熵做综合判决。实验结果表明,在低信噪比环境下此方法相对谱熵法能够提高检测准确率。 展开更多
关键词 语音信号处理 端点检测 Mel频率参数 相关系数
在线阅读 下载PDF
短时谱特征的汉语重音检测方法研究 被引量:2
5
作者 赵云雪 张珑 郑世杰 《计算机科学与探索》 CSCD 2014年第9期1120-1128,共9页
重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual line... 重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。为了验证基于听觉模型的短时谱特征集在汉语重音检测方法中的应用效果,使用MFCC(Mel frequency cepstrum coefficient)和RASTAPLP(relative spectra perceptual linear prediction)算法提取每个语音段的短时谱信息,分别构建了基于MFCC算法的短时谱特征集和基于RASTA-PLP算法的短时谱特征集;选用NaiveBayes分类器对这两类特征集进行建模,把具有最大后验概率的类作为该对象所属的类,这种分类方法充分利用了当前语音段的相关语音特性;基于MFCC的短时谱特征集和基于RASTA-PLP的短时谱特征集在ASCCD(annotated speech corpus of Chinese discourse)上能够分别得到82.1%和80.8%的汉语重音检测正确率。实验结果证明,基于MFCC的短时谱特征和基于RASTA-PLP的短时谱特征能用于汉语重音检测研究。 展开更多
关键词 重音检测 Mel频率系数(MFCC) 相关感知线性预测(RASTA-PLP) 短时特征
在线阅读 下载PDF
基于GFCC与RLS的说话人识别抗噪系统研究 被引量:5
6
作者 茅正冲 王正创 黄芳 《计算机工程与应用》 CSCD 北大核心 2015年第10期215-218,231,共5页
为了提高说话人识别抗噪系统的性能,提出了将RLS自适应滤波器作为语音信号去噪的预处理器,进一步提高语音信号的信噪比,再通过Gammatone滤波器组,对去噪后的说话人语音信号进行处理,提取说话人语音信号的特征参数GFCC,进而将特征参数GFC... 为了提高说话人识别抗噪系统的性能,提出了将RLS自适应滤波器作为语音信号去噪的预处理器,进一步提高语音信号的信噪比,再通过Gammatone滤波器组,对去噪后的说话人语音信号进行处理,提取说话人语音信号的特征参数GFCC,进而将特征参数GFCC用于说话人识别系统中。仿真实验在高斯混合模型识别系统中进行。实验结果表明,采用这种方法应用于说话人识别抗噪系统,系统的识别率及鲁棒性都有明显的提高。 展开更多
关键词 抗噪系统 递归式最小均方(RLS) Grammatone频率系数(gfcc) 识别率
在线阅读 下载PDF
基于GMM模型和LPC-MFCC联合特征的声道谱转换研究 被引量:11
7
作者 曾歆 张雄伟 +2 位作者 孙蒙 苗晓孔 姚琨 《声学技术》 CSCD 北大核心 2020年第4期451-455,共5页
声道谱转换是语音转换中的关键技术。目前,大多数语音转换方法对声道谱的转换都是先提取语音中的某一种声道特征参数,然后对其进行训练转换,进而合成转换语音。由于不同的声道特征参数表征着不同的物理和声学意义,因此这些方法通常忽略... 声道谱转换是语音转换中的关键技术。目前,大多数语音转换方法对声道谱的转换都是先提取语音中的某一种声道特征参数,然后对其进行训练转换,进而合成转换语音。由于不同的声道特征参数表征着不同的物理和声学意义,因此这些方法通常忽略了不同声道特征参数之间可能存在的互补性。针对这一问题,研究了不同声道特征参数之间进行联合建模的方法,引入了一种由线性预测系数(LinearPredictionCoefficient,LPC)和梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficient, MFCC)联合构成的LPC-MFCC特征参数,提出了一种基于高斯混合模型(Gaussian Mixture Model, GMM)和LPC-MFCC联合特征参数的语音转换方法。为验证文中方法的有效性,仿真实验选取了基于GMM和LPC的语音转换方法进行对比,对多组实验数据进行主观和客观测试,结果表明,文中提出的语音转换方法可以获得相似度更高的转换语音。 展开更多
关键词 语音转换 声道转换 高斯混合模型 联合建模 线性预测系数-梅尔频率系数
在线阅读 下载PDF
结合MGCC特征与多尺度通道注意力的环境声深度学习分类方法
8
作者 杨俊杰 丁家辉 +2 位作者 杨柳 冯丽 杨超 《应用声学》 CSCD 北大核心 2024年第3期513-524,共12页
环境声分类技术在家居安全监测、人机语声交互等领域具有关键作用。然而,声源的多样性与混合性给环境声分类方法设计带来了重大挑战。为提高分类准确率与节约计算资源,该文提出一种基于多尺度通道注意力机制的深度学习分类模型。所提模... 环境声分类技术在家居安全监测、人机语声交互等领域具有关键作用。然而,声源的多样性与混合性给环境声分类方法设计带来了重大挑战。为提高分类准确率与节约计算资源,该文提出一种基于多尺度通道注意力机制的深度学习分类模型。所提模型由特征提取模块、多尺度卷积模块、高效通道注意力模块、输出层四部分组成。首先,通过引入加权型梅尔Gammatone频率倒谱系数(MGCC)挖掘环境声频谱幅值与相位结构信息;其次,融合多尺度卷积核与高效通道注意力机制优选出声频关键局部细节和通道特征;最后,在全连接层采用softmax函数映射特征并输出环境声类型的概率值。所提模型在6种环境声的iFLYTEK、10种环境声的Urbansound8k数据集上开展测试验证,分别取得了94%、76.52%、79.24%(iFLYTEK+Urbansound8k)的分类准确率。消融实验结果进一步表明:引入的多尺度卷积模块、通道注意力机制模块对分类准确率的提升贡献率分别接近于3.77%和1.89%。实验还详细对比了7种现有的深度学习分类方法,所提算法在分类准确率上排名第二;另外,在同级别算法中如ResNet18、GoogLeNet,所提算法在模型参数量和计算复杂度方面上实现了进一步的约减。 展开更多
关键词 环境声分类 梅尔gammatone频率 多尺度核卷积 高效通道注意力 卷积神经网络
在线阅读 下载PDF
融合GMM及SVM的特定音频事件高精度识别方法 被引量:5
9
作者 罗森林 王坤 +2 位作者 谢尔曼 潘丽敏 李金玉 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期716-722,共7页
针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别... 针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别的结果进行融合处理,以手枪、步枪、机关枪等10类以上枪声为实验数据,无需针对每种枪声生成相应的识别模板,仅需训练生成2个识别模板.实验结果表明,识别准确率达到92.71%.该方法模板数量少,不需要多次训练,算法复杂度较低,不仅便于应用而且可大幅提升识别效率. 展开更多
关键词 音频识别 高斯混合模型(GMM) 支持向量机(SVM) Mel频率系数(MFCC) 特定音频事件
在线阅读 下载PDF
改进的混合MFCC语音识别算法研究 被引量:18
10
作者 袁正午 肖旺辉 《计算机工程与应用》 CSCD 北大核心 2009年第33期108-110,共3页
针对MFCC特征参数在语音识别中对中高频信号的识别精度不高的特点,提出采用IMFCC,MIDMFCC,MFCC相结合的改进算法,使用混合滤波器组,提高在语音中高频区域中的识别精度。实验结果表明,改进之后的算法与经典算法比较,在相同环境下对语音... 针对MFCC特征参数在语音识别中对中高频信号的识别精度不高的特点,提出采用IMFCC,MIDMFCC,MFCC相结合的改进算法,使用混合滤波器组,提高在语音中高频区域中的识别精度。实验结果表明,改进之后的算法与经典算法比较,在相同环境下对语音信息的识别率都有一定程度的提高。 展开更多
关键词 Mel频率系数(MFCC) 语音识别 特征提取
在线阅读 下载PDF
GMM文本无关的说话人识别系统研究 被引量:27
11
作者 蒋晔 唐振民 《计算机工程与应用》 CSCD 北大核心 2010年第11期179-182,195,共5页
在高斯混合模型(Gaussian Mixture Model,GMM)训练时,对传统的模型参数初始化方法(随机法、K均值聚类法)进行改进,提出分裂法与K均值聚类相结合的新方法。实验表明,采用改进的方法与传统方法相比,系统平均识别率有15.47%和7.5%的提高。... 在高斯混合模型(Gaussian Mixture Model,GMM)训练时,对传统的模型参数初始化方法(随机法、K均值聚类法)进行改进,提出分裂法与K均值聚类相结合的新方法。实验表明,采用改进的方法与传统方法相比,系统平均识别率有15.47%和7.5%的提高。研究了GMM的阶数、协方差阈值、预加重系数对系统识别率的影响。对实验结果进行详细分析,并根据实验数据,取它们各自表现最好的值,从而使构建的说话人识别系统获得一个较高的识别率。实验表明,在规定的实验条件下,系统可达到90%以上的识别率。 展开更多
关键词 说话人识别 高斯混合模型 美尔频率系数(MFCC) 分裂法与K均值聚类结合法
在线阅读 下载PDF
结合MFCC分析和仿生模式识别的语音识别研究 被引量:4
12
作者 王宪保 陈勇 汤丽平 《计算机工程与应用》 CSCD 北大核心 2011年第12期20-22,26,共4页
提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也... 提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也会得到一定程度的提高。运用仿生模式识别理论中同类样本连续的观点,通过在特征空间中对训练样本进行有效的覆盖,大大提高了识别结果。 展开更多
关键词 仿生模式识别 语音识别 Mel频率系数(MFCC)
在线阅读 下载PDF
结合节拍语义和MFCC声学特征的音乐流派分类 被引量:7
13
作者 庄严 于凤芹 《计算机工程与应用》 CSCD 北大核心 2015年第3期197-201,共5页
由于音乐节拍的强度、快慢、持续时间等是反映音乐不同流派风格的重要语义特征,而音乐节拍多属于由打击乐器所产生的低频部分,为此利用小波变换对音乐信号进行6层分解来提取低频节拍特征;针对节拍特征差异不明显的音乐流派,提出用描述... 由于音乐节拍的强度、快慢、持续时间等是反映音乐不同流派风格的重要语义特征,而音乐节拍多属于由打击乐器所产生的低频部分,为此利用小波变换对音乐信号进行6层分解来提取低频节拍特征;针对节拍特征差异不明显的音乐流派,提出用描述频域能量包络的MFCC声学特征与节拍特征结合,并用基于音乐流派机理分析的8阶MFCC代替常用的12阶MFCC。对8类音乐流派实验仿真结果表明,基于语义特征和声学特征结合的方法,总体分类准确率可达68.37%,同时特征维数增加对分类时间影响很小。 展开更多
关键词 音乐流派分类 节拍特征 Mel频率系数(MFCC) 小波分解 支持向量机
在线阅读 下载PDF
基于SVM的非特定人声调识别的研究 被引量:4
14
作者 肖汉光 蔡从中 《计算机工程与应用》 CSCD 北大核心 2009年第9期174-176,共3页
在建立非特定人普通话四声语调语音数据库的基础上,采用Mel频率倒谱系数(MFCCs)对语音数据进行特征参数的提取,并利用支持向量机(SVM)对语音中的四种声调进行了训练和识别研究。实验结果表明MFCCs和SVM的结合得到的平均识别率达到了97.6%。
关键词 声调识别 特征提取 Mel频率系数(MFCC) 支持向量机
在线阅读 下载PDF
类独立特征提取法在环境声音识别中的应用 被引量:2
15
作者 李玲俐 陈晓明 《计算机工程与应用》 CSCD 2012年第22期156-160,共5页
语音和非语音类声音的识别在很多系统的研发中都有非常重要的作用,如安全监控、医疗保健、现代化的视听会议系统等。虽然绝大多数声音信号都有其独特的发音机制,然而要从其中进行特征的提取往往缺乏系统有效的方法。基于不同的音频信号... 语音和非语音类声音的识别在很多系统的研发中都有非常重要的作用,如安全监控、医疗保健、现代化的视听会议系统等。虽然绝大多数声音信号都有其独特的发音机制,然而要从其中进行特征的提取往往缺乏系统有效的方法。基于不同的音频信号都有其固有的特点,使用类所属特征选择方法来提取音频中的特征,从而进行分类,并用所提出的方法对语音和两种非语音类声音(咳嗽和杯碟破碎的声音)进行了实验仿真,实验结果表明,与常规的特征选择方法相比,提出的方法用更少的特征实现了更好的分类。 展开更多
关键词 声音信号:分类 类所属 特征选择 Mel频率系数(MFCC)
在线阅读 下载PDF
一种基于临界带宽的新小波包变换算法 被引量:2
16
作者 李杰 刘贺平 《计算机工程与应用》 CSCD 2012年第14期5-7,89,共4页
针对传统语音短时分析技术容易出现丢失信息的现状,提出了一种基于临界带宽的小波包变换算法,该算法借鉴传统倒谱特征参数(MFCC)提取的过程并在该过程中引入临界带宽(Critical Bandwidth)的概念。在基于高斯混合模型的说话人识别系统中... 针对传统语音短时分析技术容易出现丢失信息的现状,提出了一种基于临界带宽的小波包变换算法,该算法借鉴传统倒谱特征参数(MFCC)提取的过程并在该过程中引入临界带宽(Critical Bandwidth)的概念。在基于高斯混合模型的说话人识别系统中进行实验,结果表明在选取不同小波包函数的情况下,该算法所取得的识别率较MFCC参数均有提高。 展开更多
关键词 特征提取 小波包变换 临界频带 Mel频率系数(MFCC)
在线阅读 下载PDF
法庭语音比对中话者自身变化性建模方法研究 被引量:2
17
作者 王华朋 姜囡 +1 位作者 刘恩 晁亚东 《计算机工程与应用》 CSCD 北大核心 2019年第8期110-115,214,共7页
针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人... 针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人员语音样本比较时的得分模型,以获得能反映说话人自身变化性的统计模型。基于目前最新的法庭证据评估的似然比证据强度评估体系,使用MFCC(Mel Frequency Cepstral Coefficients)和GFCC(Gammatone Frequency Cepstral Coefficients)特征对该方法的有效性进行了验证,并对上述特征进行了特征级和决策级融合。实验结果表明:该方法在纯净语音环境和噪声环境下都具有很高的识别率和稳定性,并且特征级融合能进一步提高识别系统的性能。 展开更多
关键词 似然比 证据强度 建模 梅尔频率系数(MFCC) 伽马通频率系数(gfcc)
在线阅读 下载PDF
自适应模糊聚类LBG矢量量化算法 被引量:1
18
作者 孙燕 《计算机工程与应用》 CSCD 2014年第23期203-205,共3页
采用模糊聚类C均值聚类确定型心改进LBG算法,实现语音参数MFCC码本的矢量量化,实验结果表明,该算法有着与单一LBG算法相近的量化误差,自适应确定码本大小码,码本尺寸显著降低,减小码本的存储量。
关键词 LBG算法 自适应 梅尔频率系数(MFCC) 模糊聚类 矢量量化
在线阅读 下载PDF
多类型语音特征进化选择算法
19
作者 张小恒 谢文宾 李勇明 《计算机工程与应用》 CSCD 北大核心 2016年第14期150-155,219,共7页
基于特征选择的语音特征获取用于说话人识别是目前较为有效的方式。但是,最优语音特征随着具体应用环境的变化而不同。因此,提出了基于四类型语音特征封装式遗传特征选择算法(FSF-Wr GAF),该算法提取了四种类型的语音特征参数,通过链式... 基于特征选择的语音特征获取用于说话人识别是目前较为有效的方式。但是,最优语音特征随着具体应用环境的变化而不同。因此,提出了基于四类型语音特征封装式遗传特征选择算法(FSF-Wr GAF),该算法提取了四种类型的语音特征参数,通过链式智能体遗传算法和GMM-UBM进行封装式动态特征选择,获取高精度的识别准确率。采用了多种指标完成该算法的性能测试。实验结果表明,该算法具体实现过程简便,改进效果明显,较同类算法在多项指标(识别率,EER,DET曲线)上都有显著提高。 展开更多
关键词 说话人识别 多类型语音特征 链式智能体遗传算法 伽马通滤波器系数(gfcc) 梅尔频率系数(MFCC) 线性预测系数(LPCC)
在线阅读 下载PDF
一种舰载低信噪比环境下的音频端点检测算法 被引量:3
20
作者 王中正 王鉴 +1 位作者 韩焱 韩星程 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第3期197-203,共7页
针对舰载环境下音频端点检测准确率及鲁棒性较低的问题,提出了一种谱减法和朴素贝叶斯分类器相结合的音频端点检测算法。首先提取纯净音频信号MFCC0与GFCC0构建融合特征,与能熵比特征一同作为朴素贝叶斯分类器的输入进行训练及建模,再... 针对舰载环境下音频端点检测准确率及鲁棒性较低的问题,提出了一种谱减法和朴素贝叶斯分类器相结合的音频端点检测算法。首先提取纯净音频信号MFCC0与GFCC0构建融合特征,与能熵比特征一同作为朴素贝叶斯分类器的输入进行训练及建模,再利用多窗谱谱减法提升待测含噪信号信噪比,提取信号相关特征,朴素贝叶斯分类器根据待测信号特征判断该信号的类别。仿真实验结果表明,该算法针对舰载低信噪比含噪音频信号与传统方法相比有效降低了虚检和漏检,具有更好的准确性及鲁棒性。 展开更多
关键词 音频端点检测 多窗减法 Mel频率系数(MFCC) gammatone频率系数(gfcc) 朴素贝叶斯
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部