为解决传统功率放大器在管壳外部进行谐波匹配,导致谐波短路传输相位不一致和谐波、基波匹配电路互相影响的问题,基于0.25μm GaN HEMT工艺,对C波段高效率预匹配功率放大器进行研究。功率放大器管壳内部HEMT输入端采用键合线和瓷片电容...为解决传统功率放大器在管壳外部进行谐波匹配,导致谐波短路传输相位不一致和谐波、基波匹配电路互相影响的问题,基于0.25μm GaN HEMT工艺,对C波段高效率预匹配功率放大器进行研究。功率放大器管壳内部HEMT输入端采用键合线和瓷片电容形成T型匹配网络来提升输入阻抗,以HEMT输出端键合线和瓷片电容分别作为电感和电容进行串联,使HEMT输出端对二次谐波短路,控制器件的电压和电流波形,提高放大器的漏极效率。管壳外部利用微带线进行阻抗变换,将输入输出阻抗匹配到50Ω。经测试,GaN HEMT功率放大器在5.8 GHz下饱和输出功率、漏极效率和功率增益分别为48.7 dBm、72%和11.3 dB。展开更多
无线通信系统中,功率放大器既是发射端尺寸最大的器件,也是功耗最高的器件。为应对通信系统对功放提出的小体积、高效率的要求,介绍了一款基于GaN工艺的内匹配Doherty功率放大器。该放大器工作频率为3.4~3.6 GHz,饱和输出功率大于47 d ...无线通信系统中,功率放大器既是发射端尺寸最大的器件,也是功耗最高的器件。为应对通信系统对功放提出的小体积、高效率的要求,介绍了一款基于GaN工艺的内匹配Doherty功率放大器。该放大器工作频率为3.4~3.6 GHz,饱和输出功率大于47 d Bm,附加效率大于55%,输出功率回退4.5 d B时,附加效率大于52%。功率放大器采用内匹配技术设计,可以有效减小体积,整个放大器外封装尺寸为30.8 mm×27.4 mm。展开更多
Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study inve...Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.展开更多
文摘无线通信系统中,功率放大器既是发射端尺寸最大的器件,也是功耗最高的器件。为应对通信系统对功放提出的小体积、高效率的要求,介绍了一款基于GaN工艺的内匹配Doherty功率放大器。该放大器工作频率为3.4~3.6 GHz,饱和输出功率大于47 d Bm,附加效率大于55%,输出功率回退4.5 d B时,附加效率大于52%。功率放大器采用内匹配技术设计,可以有效减小体积,整个放大器外封装尺寸为30.8 mm×27.4 mm。
基金supported by the National Natural Science Foundation of China(Nos.12035019,62234013,12205350,12075290,12175287)the China National Postdoctoral Program for Innovative Talents(BX20200340)+1 种基金the fund of Innovation Center of Radiation Application(No.KFZC2022020601)the Chinese Academy of Sciences(CAS)“Light of West China"Program hosted by Jian Zeng.
文摘Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.