Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca...The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.展开更多
The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of t...The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.展开更多
A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work...A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.展开更多
A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation con...A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.展开更多
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
基金supported by the National Natural Science Foundation of China(61503399).
文摘The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.
基金supported by the Astronautical Support Foundation of China (2009HTXGD)
文摘The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.
基金supported by the Fundamental Research Funds for the Central Universities(2016083)
文摘A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2002AA745120)the National Defense Pre-research Foundation(9140A09020706JW314)the National Natural Science Foundationof China(160402003).
文摘A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.