期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
1
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
基于能量熵与GWO-ELM的海缆故障信号识别方法
2
作者 张涛 刘昊 +3 位作者 张培蕾 刘哲恒 时光蕤 范希评 《光通信研究》 北大核心 2025年第4期71-78,共8页
【目的】针对海底电缆振动信号研究中特征提取效果不佳以及故障诊断效率较低的问题,文章提出了一种基于能量熵特征和灰狼优化(GWO)算法优化极限学习机(ELM)的海缆故障诊断方法。【方法】首先,采用有限元仿真软件模拟得出不同工况的海缆... 【目的】针对海底电缆振动信号研究中特征提取效果不佳以及故障诊断效率较低的问题,文章提出了一种基于能量熵特征和灰狼优化(GWO)算法优化极限学习机(ELM)的海缆故障诊断方法。【方法】首先,采用有限元仿真软件模拟得出不同工况的海缆光单元振动速度信号;然后,结合经验模态分解(EMD)算法将振动信号分解为4个含有固有特征的本征模函数(IMF)分量,提取计算各个IMF分量的能量熵,将其作为指标构建特征向量;最后,将不同工况下的特征向量样本输入采用GWO-ELM方法的分类器中进行工作状态的判断。【结果】在足量样本以及多次计算求平均值的情况下,通过数据总结得出该方法对海缆不同状态的识别准确率能够达到97.4%,分类算法识别时间低至0.9685 s,并设置了多个算法对比组,结果表明,文章所提方法在提取信号特征以及故障诊断方面有着良好效果。【结论】目前海缆在线监测常采用温度和应力分析,文章所提方法在大大降低测量难度的同时,故障特征提取效果较好,能够准确识别海缆的实时工作状态。 展开更多
关键词 海底电缆 振动信号 能量熵 灰狼优化算法 极限学习机 故障诊断
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:5
3
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(gwo)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
4
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进PSO-gwo算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于IGWO-BP-PID的热电制冷器温度控制方法
5
作者 徐晓钦 陈志明 +2 位作者 袁粤杨 沈萍 张镜洋 《兵器装备工程学报》 北大核心 2025年第2期236-243,共8页
针对热电制冷器在温度控制过程出现超调量较大、误差较大等问题,提出一种基于改进型灰狼算法优化的BP神经网络动态整定PID控制参数的方法。在所提方法中使用差分进化法则对灰狼算法进行改进,使用经改进型灰狼算法优化后的BP神经网络对PI... 针对热电制冷器在温度控制过程出现超调量较大、误差较大等问题,提出一种基于改进型灰狼算法优化的BP神经网络动态整定PID控制参数的方法。在所提方法中使用差分进化法则对灰狼算法进行改进,使用经改进型灰狼算法优化后的BP神经网络对PID控制参数进行自适应调整。为验证该方法的有效性,对算法进行仿真并与Ziegler-Nichols调试法以及粒子群优化法进行控制效果对比。仿真结果表明,在连续实现1、5、10℃的温度目标过程中,所提方法相较于Ziegler-Nichols调试法、粒子群优化法在到温时间上分别减小了40.19%、1.54%,在超调量上分别减少了87.55%、69.14%,在稳态误差上分别减少了88.54%、67.23%。此外,在跟踪正弦函数目标的对比结果也进一步证实基于IGWO-BP-PID控制方法的优越性。所提方法可以快速、高精度地解决热电制冷器温度控制问题。 展开更多
关键词 温度控制 热电制冷器 PID参数整定 BP算法 改进gwo算法
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
6
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(gwo)算法 模型堆叠
在线阅读 下载PDF
基于GWO-XGBoost和MOPSO算法的脱硫系统运行优化
7
作者 张婉 钱玉良 +1 位作者 金鑫 彭道刚 《化学工程》 北大核心 2025年第9期77-82,共6页
燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化... 燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化方法。利用GWO对XGBoost算法的超参数进行优化,进一步提升XGBoost模型的预测性能,建立基于GWO-XGBoost算法的脱硫效率预测模型。以脱硫成本最低和脱硫效率最高为优化目标,采用MOPSO算法建立优化模型并得到最佳运行参数,为循环浆液泵和氧化风机的运行提供指导。以某典型工况为例,在保证出口SO 2排放浓度达标的情况下,使用优化的运行策略,运行成本可降低385.23元/h。结果表明:该脱硫效率预测模型预测效果较佳,该优化模型能够对燃煤电厂脱硫过程提供科学的运行指导,节省脱硫过程中的物耗和关键设备的能耗,提高脱硫系统运行操作方案的可靠性和经济性。 展开更多
关键词 湿法脱硫系统 运行优化 氧化风机 循环浆液泵 gwo-XGBoost算法 MOPSO算法
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
8
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
用于碳酸盐岩储层裂缝检测的GWO-CS-BP算法及应用研究 被引量:1
9
作者 李琼 张宇 石林坤 《石油物探》 CSCD 北大核心 2024年第4期833-845,共13页
碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)... 碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)与BP(back propagation)相结合形成的裂隙检测方法。将含裂缝信息的相干、曲率、倾角、方位角和构型张量等属性作为GWO-CS-BP神经网络的输入数据,在工区地质资料约束下根据测井数据获得裂缝发育水平评价指标,进而对研究区裂缝发育水平进行评价并划分等级。研究区碳酸盐岩储层裂缝发育水平检测结果表明,GWO-CS-BP算法能够综合各属性特点对研究区的裂缝发育水平特征进行二次误差控制,获得裂缝发育水平评价指标f s并将研究区裂缝发育水平划分为3个等级及4个裂缝存在区域。其中,当研究区裂缝发育水平参数的值适中时,即f s的值大于4.0且小于5.8时,C区域最有利于油气的聚集,高产井的分布数量较多。利用GWO-CS-BP算法对研究区的裂缝发育水平进行了精细评价,并得出裂隙发育水平参数f s,实现了GWO-CS算法改进的BP神经网络在裂缝检测中的有效应用。 展开更多
关键词 地震属性 裂缝检测 gwo-CS优化算法 BP神经网络 碳酸盐岩储层
在线阅读 下载PDF
基于GWO-PSO算法的小尺度地区LID布设优化模型研究 被引量:8
10
作者 夏怡杰 杨侃 +2 位作者 夏超 石莹洁 徐晗羽 《水利水电技术(中英文)》 北大核心 2024年第3期90-101,共12页
【目的】海绵城市通过低影响开发(LID)雨水系统来降低降雨相关灾害的影响,合理的LID布设方案是开发效果的决定性因素。【方法】通过耦合暴雨洪水管理模型(SWMM)和灰狼粒子群算法(GWO-PSO),建立了小尺度地区LID优化布设模型。GWO-PSO算... 【目的】海绵城市通过低影响开发(LID)雨水系统来降低降雨相关灾害的影响,合理的LID布设方案是开发效果的决定性因素。【方法】通过耦合暴雨洪水管理模型(SWMM)和灰狼粒子群算法(GWO-PSO),建立了小尺度地区LID优化布设模型。GWO-PSO算法中粒子进行了基于社会等级制度的位置策略调整,以此得到更好地寻优性能。模型依据排放口流量,完成参数自动率定,并以洪峰流量为目标,经济成本为约束,求解雨水花园、生物网格、绿色屋顶和透水铺装四种包含相互独立与制约关系的LID设施的优化布设方案。【结果】将该模型应用于某试点小区,在预算182万元的情况下,得到5 a、10 a、20 a和50 a重现期下的布设方案,洪峰削减率分别为61.5%、53.2%、42.4%和31.1%。【结论】结果表明:在小尺度地区进行LID建设时,需要考虑子汇水区面积的影响;对于道路汇水区,需要联系地理位置布设;在低重现期下,各LID设施调控效果均较好,而在高重现期下,绿色屋顶的承受能力最强,且需要更多预算进行削峰。 展开更多
关键词 海绵城市 gwo-PSO算法 SWMM模型 参数率定 LID方案优化 降雨
在线阅读 下载PDF
基于改进GWO-GM(1,1)模型的直流充电桩在线计量误差预测方法研究 被引量:7
11
作者 陈平 周娟 吴名功 《现代电子技术》 北大核心 2024年第5期112-117,共6页
针对传统灰色理论预测精度不高和基本的灰狼算法容易陷入局部最优的情况,提出改进的灰狼算法与灰色理论融合的直流充电桩在线计量误差预测模型。首先,通过差分变异策略进行向量合成,引入非线性变异概率k,增强前期全局搜索能力,平衡灰狼... 针对传统灰色理论预测精度不高和基本的灰狼算法容易陷入局部最优的情况,提出改进的灰狼算法与灰色理论融合的直流充电桩在线计量误差预测模型。首先,通过差分变异策略进行向量合成,引入非线性变异概率k,增强前期全局搜索能力,平衡灰狼算法的全局和局部搜索能力,避免陷入局部最优的问题;然后,将改进的算法应用于GM(1,1)模型,通过多次迭代寻找适应度值最好的一组灰狼位置,寻找到最优背景值对灰色模型进行优化,进一步提高模型的预测精度;最后,将改进前与改进后的验证模型进行对比,改进的灰色预测模型相较于基础的灰色模型均方误差与平均绝对误差分别降低了70.7%和27.2%,验证了所提方法的有效性。 展开更多
关键词 充电桩 工作误差 灰色预测 在线计量 模型融合 灰狼算法
在线阅读 下载PDF
基于GWO-BP的震后过渡安置阶段应急物资需求预测 被引量:3
12
作者 詹伟 程春鑫 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期17-23,共7页
为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应... 为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应急物资间的数量关系,对震后过渡性安置阶段的物资需求量进行预测。结果表明:GWO-BP神经网络模型在预测转移安置人口方面,表现出较高的准确率和稳定性,能有效预测灾区安置人口数量,进而推算出相应的物资需求量。GWO-BP神经网络模型在震后过渡安置阶段的物资需求预测方面具有一定的有效性,能为震后应急物资的筹措决策提供参考。 展开更多
关键词 灰狼优化算法(gwo) 反向传播(BP)神经网络 地震 过渡安置阶段 应急物资 需求预测
在线阅读 下载PDF
基于GWO-ELM的高速铣削力预测模型研究
13
作者 仵景岳 尹凝霞 +1 位作者 吕亮亮 麦青群 《宇航材料工艺》 CAS CSCD 北大核心 2024年第5期24-30,共7页
针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果... 针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果与BP、RBF、ELM等七种预测模型和实验结果进行比较。研究结果表明:基于GWO-ELM的高速铣削力预测模型隐含层节点数可以利用二阶多元回归模型分析确定,预测模型的准确率为98.8%、决定系数达到0.98871优于其他预测模型,故基于GWO-ELM的高速铣削力预测模型具有可行性和准确性,该研究结果可为GWO-ELM模型隐含层节点数的确定及高速铣削力预测模型的选择提供参考与借鉴。 展开更多
关键词 宇航材料 高速铣削力 灰狼算法(gwo) 极限学习机(ELM)
在线阅读 下载PDF
基于改进灰狼优化算法的多无人机应急救援任务分配 被引量:1
14
作者 田宇 唐阳山 +2 位作者 李冬月 任鑫珊 刘建明 《现代电子技术》 北大核心 2025年第11期163-168,共6页
为提高多无人机在应急救援工作中执行信息侦察任务的高效性,提出一种多无人机任务分配数学模型,并设计了一种改进的基于粒子群优化(PSO)算法和灰狼优化(GWO)算法的混合算法,简称CPS-GWO算法。首先,将多无人机信息侦察任务分配问题描述... 为提高多无人机在应急救援工作中执行信息侦察任务的高效性,提出一种多无人机任务分配数学模型,并设计了一种改进的基于粒子群优化(PSO)算法和灰狼优化(GWO)算法的混合算法,简称CPS-GWO算法。首先,将多无人机信息侦察任务分配问题描述为多旅行商(MTSP)问题,以最短无人机飞行航程和最少无人机数量为目标建立数学模型;然后,引入Kent混沌映射和粒子群优化算法,分别从种群初始化和搜索策略两个角度对灰狼优化算法进行改进,设计出用于求解MTSP问题的CPS-GWO算法。最后,基于6组TSPLIB实例数据,通过Matlab仿真实验得出各实例在CPS-GWO算法下的无人机任务分配方案,并与现有研究中提出的改进灰狼优化算法在相同实例下得出的结果进行比较,验证了CPS-GWO算法在解决多旅行商问题上的有效性和可行性。 展开更多
关键词 无人机 应急救援 任务分配 粒子群优化算法 灰狼优化算法 Kent混沌映射 多旅行商问题
在线阅读 下载PDF
基于GWO算法光伏阵列多峰值的MPPT 被引量:19
15
作者 张巧杰 王凯丽 房雪晴 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1526-1532,共7页
针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰... 针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰狼优化(GWO)算法应用于光伏阵列多峰值MPPT算法中.先建立处于局部遮挡情形下光伏阵列的数学模型,再解析基于GWO算法的MPPT算法原理.仿真实验结果表明:GWO算法可快速跟踪到最大功率点;GWO算法比PSO算法的跟踪速度提高1倍,跟踪效率提高0.1%. 展开更多
关键词 灰狼优化算法 最大功率点跟踪 部分阴影 光伏阵列
在线阅读 下载PDF
改进GWO优化SVM的服务器性能预测 被引量:8
16
作者 李建民 陈慧 +1 位作者 杨冬芹 林振荣 《计算机工程与设计》 北大核心 2019年第11期3099-3105,3163,共8页
为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼... 为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼寻优算法初始种群的最优值,克服GWO的初始种群随机生成的局限性,使GWO具有更加良好的寻优能力,获取SVM算法的参数组合C和γ的最优解。实验结果表明,相比于传统的SVM、ABCSVM、GWOSVM模型,DEGWOSVM预测模型具有较高的预测精度、良好的稳定性和泛化能力。 展开更多
关键词 支持向量机 灰狼寻优算法 差分进化算法 服务器性能 预测模型
在线阅读 下载PDF
基于CEEMD和GWO-SVR的铣削振动信号前瞻预测 被引量:6
17
作者 吴石 张轩瑞 刘献礼 《振动与冲击》 EI CSCD 北大核心 2022年第11期199-209,234,共12页
汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动... 汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动信号进行6层模态分解,得到各层本征模态函数及趋势序列;然后分别构建不同工况下的支持向量回归预测模型,采用灰狼优化算法对支持向量回归中的参数进行寻优分析;最后对时域振动信号进行重构和前瞻预测。试验结果表明,在淬硬钢拼接区铣削过程中,结合CEEMD和GWO-SVR的铣削振动信号前瞻预测方法相较于其它传统方法具有更良好的预测效果,在预测时间为0.12 s时总体预测准确率达94%以上。 展开更多
关键词 铣削振动 前瞻预测 互补式集成经验模态 支持向量回归 灰狼优化算法
在线阅读 下载PDF
基于RS-GWO-GRNN的充填管道失效风险研究 被引量:9
18
作者 骆正山 王文辉 张新生 《有色金属工程》 CAS 北大核心 2019年第6期76-83,共8页
为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道... 为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。 展开更多
关键词 粗糙集(RS)理论 灰狼优化(gwo)算法 广义回归神经网络(GRNN) 充填管道 失效风险
在线阅读 下载PDF
基于CGWO算法的边坡最小安全系数全局寻优方法 被引量:4
19
作者 王述红 魏崴 +1 位作者 韩文帅 陈浩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第7期1033-1042,共10页
针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,... 针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,采用改进Tent混沌映射提高初始种群多样性;其次,通过混沌扰动策略避免算法陷入局部最优;最后,引入参数混沌非线性调节机制均衡算法的全局开发和局部勘探算力.13个基准测试函数的仿真结果表明,改进后的算法与基本GWO,WOA,PSO以及SCA相比具有更强的综合寻优性能.选取ACADS边坡考核题进行计算分析,CGWO算法表现出较高的计算精度和收敛速度,能够有效地搜索到复杂分层边坡的最小安全系数.对比有限元强度折减法,该方法具有操作简易、搜索区域易于设置等优点. 展开更多
关键词 灰狼优化算法 混沌映射 边坡稳定性分析 最危险滑动面 最小安全系数
在线阅读 下载PDF
基于CP结合DE-GWO-SVR的海上风电基础结构损伤识别 被引量:5
20
作者 杜尊峰 邵玄玄 王晓梅 《振动与冲击》 EI CSCD 北大核心 2020年第22期110-118,共9页
结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR... 结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR)用于解决复杂结构的模态与损伤识别;CP算法基于信号预测性函数通过使分离信号的时间预测性度量最大化找到其线性混合矩阵,使分离分量具有最小复杂度并据此估计源信号。利用CP算法对结构响应信号进性分离得到信号分布向量(SDV)与分离源信号,通过定义差值曲率分布向量可以对结构损伤位置进行准确定位;对于损伤程度的识别,提出了一种DE改进的GWO对SVR进行优化的算法,即在GWO算法迭代过程中利用差分进化思想引入动态缩放因子以及交叉概率因子提高搜索和收敛速度,扩大种群所搜范围;利用不同工况下CP算法提取的差值曲率分布向量对结构损伤程度进行识别。通过对海上风电基础结构数值模型的分析,结果表明:CP算法对于高阶模态参数识别较fastICA表现出较强的适应性与优越性;同时,DE-GWO能够提高收敛速度,通过SVR算法对损伤的识别结果相比于BP神经网络更加准确。 展开更多
关键词 盲源分离(BSS) 复杂度追踪(CP)算法 差分进化(DE) 灰狼优化(gwo)算法 海上风电基础结构 损伤识别 支持向量机(SVR)
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部