针对滚动轴承故障振动信号在特征提取时出现的信息丢失、误动等不确定性问题以及故障诊断准确性不理想的问题,提出了一种基于概率盒理论和改进灰狼算法(grey wolf optimization,GWO)优化支持向量机(support vector machine,SVM)的混合...针对滚动轴承故障振动信号在特征提取时出现的信息丢失、误动等不确定性问题以及故障诊断准确性不理想的问题,提出了一种基于概率盒理论和改进灰狼算法(grey wolf optimization,GWO)优化支持向量机(support vector machine,SVM)的混合智能机械故障诊断方法。利用直接建模的方法得到概率盒,再采用累积不确定性测量方法提取其特征,构建出用于故障诊断的特征向量集;利用改进的灰狼算法对支持向量机进行优化;利用优化后的支持向量机实现对特征集的分类诊断。所提方法充分利用了概率盒在处理不确定性问题的优势和支持向量机在解决小样本、非线性模式识别中优秀的分类性能,可对不同故障类型的振动信号进行更加精准的辨识。通过对滚动轴承振动信号的试验验证与对比试验分析表明,该方法在滚动轴承故障诊断方面具有一定的有效性。展开更多
语音情感识别日益受到人们的关注,在社会生活中发挥着重要作用。为了提高语音情感的识别率,提出一种改进的灰狼算法(Grey Wolf Optimizer,GWO)优化支持向量机(Support Vector Machine,SVM)的分类模型(IGWO-SVM)。介绍了灰狼算法的基本理...语音情感识别日益受到人们的关注,在社会生活中发挥着重要作用。为了提高语音情感的识别率,提出一种改进的灰狼算法(Grey Wolf Optimizer,GWO)优化支持向量机(Support Vector Machine,SVM)的分类模型(IGWO-SVM)。介绍了灰狼算法的基本理论;嵌入选择算子和引入非线性收敛因子来提升IGWO的寻优性能;采用IGWO优化SVM参数,进而建立语音情感的分类模型。通过10个基准测试函数的仿真实验,验证了IGWO性能优于GWO。对于参比模型,IGWO-SVM模型能够有效提高语音情感的识别率。展开更多
文摘针对滚动轴承故障振动信号在特征提取时出现的信息丢失、误动等不确定性问题以及故障诊断准确性不理想的问题,提出了一种基于概率盒理论和改进灰狼算法(grey wolf optimization,GWO)优化支持向量机(support vector machine,SVM)的混合智能机械故障诊断方法。利用直接建模的方法得到概率盒,再采用累积不确定性测量方法提取其特征,构建出用于故障诊断的特征向量集;利用改进的灰狼算法对支持向量机进行优化;利用优化后的支持向量机实现对特征集的分类诊断。所提方法充分利用了概率盒在处理不确定性问题的优势和支持向量机在解决小样本、非线性模式识别中优秀的分类性能,可对不同故障类型的振动信号进行更加精准的辨识。通过对滚动轴承振动信号的试验验证与对比试验分析表明,该方法在滚动轴承故障诊断方面具有一定的有效性。
文摘语音情感识别日益受到人们的关注,在社会生活中发挥着重要作用。为了提高语音情感的识别率,提出一种改进的灰狼算法(Grey Wolf Optimizer,GWO)优化支持向量机(Support Vector Machine,SVM)的分类模型(IGWO-SVM)。介绍了灰狼算法的基本理论;嵌入选择算子和引入非线性收敛因子来提升IGWO的寻优性能;采用IGWO优化SVM参数,进而建立语音情感的分类模型。通过10个基准测试函数的仿真实验,验证了IGWO性能优于GWO。对于参比模型,IGWO-SVM模型能够有效提高语音情感的识别率。