Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the ...Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate...The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.展开更多
Smart materials,which exhibit shape memory behavior in response to external stimuli,have shown great potential for use in biomedical applications.In this study,an energetic composite was fabricated using a UV-assisted...Smart materials,which exhibit shape memory behavior in response to external stimuli,have shown great potential for use in biomedical applications.In this study,an energetic composite was fabricated using a UV-assisted DIW 3D printing technique and a shape memory material(SMP)as the binder.This composite has the ability to reduce the impact of external factors and adjust gun propellant combustion behavior.The composition and 3D printing process were delineated,while the internal structure and shape memory performance of the composite material were studied.The energetic SMP composite exhibits an angle of reversal of 18 s at 70°,with a maximum elongation typically reaching up to 280% of the original length and a recovery length of approximately 105%during ten cycles.Additionally,thermal decomposition and combustion behavior were also demonstrated for the energetic SMP composite.展开更多
A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballist...A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.展开更多
The desire for increased performance from guns is driving the charge designer towards charges that present challenges to numerical modelling.There is a pressing need for accurate,validated ignition and combustion mode...The desire for increased performance from guns is driving the charge designer towards charges that present challenges to numerical modelling.There is a pressing need for accurate,validated ignition and combustion models that can be used to predict the performance of advanced charges and ensure pressure waves are not developed or,if they are,then they can be managed.This paper describes efforts to model complex charge designs using a two-dimensional axi-symmetric multi-phase flow internal ballistics model.展开更多
Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rig...Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rigidity and thus accuracy,but on other hand they also contribute in weight addition to weapon.This investigation deals with comparison between a conventional machine gun barrel and an improved innovative design having T-fins,both having same weight and chambered in 5.56×45 NATO ammunition,to compare their structural and harmonic characteristics which were parameterized by factors such as modal spectrum,directional deformation at muzzle ends during a single shot fire and harmonic behaviour at corresponding range of exciting frequencies.The solid models of both the barrels having same weight,were created using Solidworks.The continuous input data functions were generated by MATLAB using the field tested discreet data points.The generated velocity-distance functions were converted into time dependent functions using integration algorithms to calculate transient parameters such as time steps,excitation frequency range,angle of rotation of projectile and its angular velocity.The dynamic condition simulated the varying nature of forces due to eccentricity in projectile and this data was fed to a time step study using ANSYS transient structural work bench followed by modal and harmonic analysis.The results showed a significant reduction in muzzle end deformation which thus proved that the T-finned barrel,although had same weight as that of the conventional one,but had better structural and harmonic characteristics,and hence it would inherit better firing accuracy.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software ...In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software was used to build a parameterized dynamic model of the saddle ring.A parameter identification method for the ring was proposed based on the particle swarm optimization algorithm.A loading test was designed and performed several times at different elevation angles.The response histories of the saddle ring with different loads were then obtained.The parameters of the saddle ring dynamic model were identified from statistics generated at a 500 elevation angle to verify the feasibility and accuracy of the proposed method.The actual loading history of the ring at a 70°elevation angle was taken as the model input.The response histories of the ring under these working conditions were obtained through a simulation.The simulation results agreed with the actual response.Thus,the effectiveness and applicability of the proposed dynamic model were verified,and it provides an effective method for modeling saddle rings.展开更多
In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical st...In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.展开更多
The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation ...The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation is given. Its structure and operational principle are introduced. Using a semi-closed vessel as a source of compression force, the device can simulate any kind of dynamic environment in a gun propellant charge. Using the low temperature inert gas (N2) as the compression medium, the device can not only ensure that the simulation is real, but also protect the fragmentized propellant from combustion after experiment. Using the device, many simulation experiments have been accomplished, and dynamic environment of propellant fracture is acquired. With the experiments, fragmentized propellant for the compression and fracture of charge bed is obtained. Results of experiments show that the new device can be used to study the principle of the compression and fracture of charge bed.展开更多
Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system ...Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.展开更多
文摘Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金the support of the instrument and equipment fund of the Key Laboratory of Special Energy,Ministry of Education,Nanjing University of Science and Technology,China.
文摘The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.
文摘Smart materials,which exhibit shape memory behavior in response to external stimuli,have shown great potential for use in biomedical applications.In this study,an energetic composite was fabricated using a UV-assisted DIW 3D printing technique and a shape memory material(SMP)as the binder.This composite has the ability to reduce the impact of external factors and adjust gun propellant combustion behavior.The composition and 3D printing process were delineated,while the internal structure and shape memory performance of the composite material were studied.The energetic SMP composite exhibits an angle of reversal of 18 s at 70°,with a maximum elongation typically reaching up to 280% of the original length and a recovery length of approximately 105%during ten cycles.Additionally,thermal decomposition and combustion behavior were also demonstrated for the energetic SMP composite.
基金the support provided by the Royal Higher Institute for Defence (RHID) of the Belgian Defence, which has contributed to the progress of this ongoing research.
文摘A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.
文摘The desire for increased performance from guns is driving the charge designer towards charges that present challenges to numerical modelling.There is a pressing need for accurate,validated ignition and combustion models that can be used to predict the performance of advanced charges and ensure pressure waves are not developed or,if they are,then they can be managed.This paper describes efforts to model complex charge designs using a two-dimensional axi-symmetric multi-phase flow internal ballistics model.
文摘Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rigidity and thus accuracy,but on other hand they also contribute in weight addition to weapon.This investigation deals with comparison between a conventional machine gun barrel and an improved innovative design having T-fins,both having same weight and chambered in 5.56×45 NATO ammunition,to compare their structural and harmonic characteristics which were parameterized by factors such as modal spectrum,directional deformation at muzzle ends during a single shot fire and harmonic behaviour at corresponding range of exciting frequencies.The solid models of both the barrels having same weight,were created using Solidworks.The continuous input data functions were generated by MATLAB using the field tested discreet data points.The generated velocity-distance functions were converted into time dependent functions using integration algorithms to calculate transient parameters such as time steps,excitation frequency range,angle of rotation of projectile and its angular velocity.The dynamic condition simulated the varying nature of forces due to eccentricity in projectile and this data was fed to a time step study using ANSYS transient structural work bench followed by modal and harmonic analysis.The results showed a significant reduction in muzzle end deformation which thus proved that the T-finned barrel,although had same weight as that of the conventional one,but had better structural and harmonic characteristics,and hence it would inherit better firing accuracy.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
基金supported by National Natural Science Foundation of China(11472137)the Natural Science Foundation of Jiangsu Province,China(BK20140773)。
文摘In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software was used to build a parameterized dynamic model of the saddle ring.A parameter identification method for the ring was proposed based on the particle swarm optimization algorithm.A loading test was designed and performed several times at different elevation angles.The response histories of the saddle ring with different loads were then obtained.The parameters of the saddle ring dynamic model were identified from statistics generated at a 500 elevation angle to verify the feasibility and accuracy of the proposed method.The actual loading history of the ring at a 70°elevation angle was taken as the model input.The response histories of the ring under these working conditions were obtained through a simulation.The simulation results agreed with the actual response.Thus,the effectiveness and applicability of the proposed dynamic model were verified,and it provides an effective method for modeling saddle rings.
基金the DAAD Faculty Development for Ph.D.Candidates(Balochistan)2016(57245990)-HRDI-UESTP’s/UET’s funding scheme in cooperation with the Higher Education Commission of Pakistan(HEC)for sponsoring the stay at IMF TU Freiberg,Germany.
文摘In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.
文摘The simulation of compression and fracture of charge bed in chamber is one of the key problems in the study of launch safety of gun propellant charge. A new kind of experimental device that can be used for simulation is given. Its structure and operational principle are introduced. Using a semi-closed vessel as a source of compression force, the device can simulate any kind of dynamic environment in a gun propellant charge. Using the low temperature inert gas (N2) as the compression medium, the device can not only ensure that the simulation is real, but also protect the fragmentized propellant from combustion after experiment. Using the device, many simulation experiments have been accomplished, and dynamic environment of propellant fracture is acquired. With the experiments, fragmentized propellant for the compression and fracture of charge bed is obtained. Results of experiments show that the new device can be used to study the principle of the compression and fracture of charge bed.
文摘Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.