期刊文献+
共找到3,040篇文章
< 1 2 152 >
每页显示 20 50 100
基于JPS和变半径RS曲线的Hybrid A^(*)路径规划算法
1
作者 张博强 张成龙 +1 位作者 冯天培 高向川 《郑州大学学报(工学版)》 北大核心 2025年第2期19-25,共7页
为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS... 为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS)算法进行起点到终点的路径搜索,将该路径进行拉直处理后作为计算节点启发值的基础;其次,设计了新的启发函数,在Hybrid A^(*)算法扩展前就能完成所有节点启发值的计算,减少了Hybrid A^(*)扩展节点时计算启发值所需的时间;最后,将RS曲线由最小转弯半径搜索改为变半径RS曲线搜索,使RS曲线能够更早搜索到一条无碰撞路径,进一步提升了Hybrid A^(*)算法的搜索效率。仿真结果表明:所提J-Hybrid A^(*)算法在简单环境中比传统Hybrid A^(*)算法和反向Hybrid A^(*)算法用时分别缩短68%、21%,在复杂环境中缩短59%、27%。在不同分辨率地图场景中,随着地图分辨率的提高,规划效率显著提升。实车实验表明:所提J-Hybrid A^(*)算法相较于传统Hybrid A^(*)算法和反向Hybrid A^(*)算法的搜索用时分别减少88%、82%,有效提升了Hybrid A^(*)算法的搜索效率、缩短了路径规划所需时间。 展开更多
关键词 hybrid A^(*)算法 启发函数 JPS算法 RS曲线 路径规划
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
3
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
4
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
Multi-objective coordination optimal model for new power intelligence center based on hybrid algorithm 被引量:1
5
作者 刘吉成 牛东晓 乞建勋 《Journal of Central South University》 SCIE EI CAS 2009年第4期683-689,共7页
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a... In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network. 展开更多
关键词 power intelligence center (PIC) coordination optimal model power network planning hybrid algorithm
在线阅读 下载PDF
Solving open vehicle problem with time window by hybrid column generation algorithm 被引量:1
6
作者 YU Naikang QIAN Bin +2 位作者 HU Rong CHEN Yuwang WANG Ling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期997-1009,共13页
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ... This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time. 展开更多
关键词 open vehicle routing problem with time window(OVRPTW) hybrid column generation algorithm(HCGA) mixed integer programming label setting algorithm
在线阅读 下载PDF
Hybrid Genetic Algorithm for Engineering Structural Optimization with Dis crete Variables
7
作者 WEI Ying-zi 1,2,3, ZHAO Ming-yang 1 (1. Robotics Laboratory, Shenyang Institute of Automation, Chinese Acad emy of Science, Shenyang 110016, China 2. Shenyang Institute of Technology , Shenyang 110016, China 3. Graduate School of the Chinese Academy of Scienc es, Beijing 100039, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期178-,共1页
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r.... Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA. 展开更多
关键词 hybrid genetic algorithm discrete variables o ptimization design imitative full-stress
在线阅读 下载PDF
New Hybrid Genetic Algorithm for Vertex Cover Problems
8
作者 HuoHongwei XuJin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期90-94,共5页
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are ... This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms. 展开更多
关键词 vertex cover hybrid genetic algorithm scan-repair local improvement.
在线阅读 下载PDF
Hybrid Genetic Algorithms with Fuzzy Logic Controller
9
作者 Zheng Dawei & Gen Mitsuo Department of Industrial and Systems Engineering, Ashikaga Institute of Technology, 326, Japan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期9-15,共7页
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com... In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper. 展开更多
关键词 Machine scheduling problem hybrid genetic algorithms Fuzzy logic.
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
10
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
A hybrid algorithm for reengineering the refractive index profile of inhomogeneous coatings from optical in-situ broadband monitoring data
11
作者 S. Wilbrandt O. Stenzel +1 位作者 D. Gbler N. Kaiser 《光学精密工程》 EI CAS CSCD 北大核心 2005年第4期487-491,共5页
Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband... Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved. 展开更多
关键词 光学涂覆技术 折射率 宽带 混合模型 管理方式
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
12
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
结合A^(*)与速度障碍法的无人机路径规划混合算法
13
作者 屈景怡 黄达权 +1 位作者 许楠 王鹏 《兵器装备工程学报》 北大核心 2025年第8期70-79,共10页
针对城市复杂低空场景中无人机面临的静态与动态障碍物协同避障难题,提出“全局-局部”分层协同路径规划架构,突破传统单层规划范式。针对静态障碍物构建三维栅格化全局导航框架,改进A*算法通过三维空间拓展与优先遍历策略,在保证路径... 针对城市复杂低空场景中无人机面临的静态与动态障碍物协同避障难题,提出“全局-局部”分层协同路径规划架构,突破传统单层规划范式。针对静态障碍物构建三维栅格化全局导航框架,改进A*算法通过三维空间拓展与优先遍历策略,在保证路径最优长度的前提下提升搜索效率,并采用关键节点保留技术减少冗余路径点,生成兼具平滑性与实时性的全局路径;针对动态障碍物开发多维度避障决策模型,将速度障碍法升级至三维模型,结合无人机运动学约束生成符合加速度限制的避障轨迹,解决动态环境下的实时避障问题。通过分层递进式算法融合机制,以全局路径引导局部动态规划,构建全环境适应性混合路径规划算法,并完成全链路仿真环境部署验证。实验结果表明,改进算法在全局规划中路径效率较传统方法提升60%,局部动态避障成功率超过90%,且轨迹平滑性满足无人机动力学约束。本研究形成的分层协同规划框架为高密度城市空域无人机自主导航提供理论创新性与工程实用性兼备的解决方案,推动低空交通系统智能化发展。 展开更多
关键词 无人机 路径规划 A~*算法 速度障碍法 混合算法
在线阅读 下载PDF
山区生鲜物流卡车-无人机联合集货路径规划 被引量:1
14
作者 付朝晖 李君宇 刘长石 《计算机工程与应用》 北大核心 2025年第14期332-342,共11页
山区道路环境恶劣,部分区域卡车无法通行,导致生鲜农产品集货效率低下,严重影响其新鲜度与质量。为此,提出卡车-无人机联合集货模式,利用无人机为卡车无法通行区域客户提供集货服务。综合考虑山区道路通行状况、无人机能耗、容量、飞行... 山区道路环境恶劣,部分区域卡车无法通行,导致生鲜农产品集货效率低下,严重影响其新鲜度与质量。为此,提出卡车-无人机联合集货模式,利用无人机为卡车无法通行区域客户提供集货服务。综合考虑山区道路通行状况、无人机能耗、容量、飞行速度、生鲜农产品新鲜度、卡车容量与速度等因素,以总集货成本最小为目标,构建卡车-无人机联合集货的路径规划模型,并根据模型特性设计混合遗传算法进行求解,采用多类型算例开展仿真实验。计算结果表明,所提方法能够在较短时间内科学规划卡车-无人机联合集货路径,提升集货时效性,有效保障生鲜农产品的新鲜度与质量,货损成本仅占总价值的0.39%;与遗传算法、蚁群算法、粒子群算法相比,混合遗传算法能够节省1.11%、3.03%、1.51%的总集货成本,展现出优越的求解能力;卡车-无人机联合集货模式能够突破山区生鲜农产品物流“最先一公里”的发展瓶颈,助力生鲜农产品上行。 展开更多
关键词 生鲜农产品物流 “最先一公里” 卡车-无人机路径规划 混合遗传算法
在线阅读 下载PDF
考虑多充电桩排队和时间窗的电动货车路径规划
15
作者 胡路 乐诗彤 朱娟秀 《西南交通大学学报》 北大核心 2025年第2期299-307,共9页
在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,... 在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,建立路径优化模型,并将充电站排队模型嵌入其中;优化目标包括最小化车辆耗电成本、司机工资、时间窗惩罚成本、充电桩总成本;为求解该模型,提出一种结合节约里程(C-W)和改进大邻域搜索(LNS)的混合启发式算法,其中,充电站的系统性能指标采用递归算法获得.18组实验结果表明:同步增加充电桩数量可将车辆单次充电的平均排队时间控制在1~5 min,并有效减少2.6%~21.0%的总成本;增加充电站数量可缩短排队时间,但会增加整体路径总成本;当客户时间窗较短或服务时间较长时,充电桩数量变化对时间窗满足的影响更为显著. 展开更多
关键词 物流 电动货车 充电站 混合启发式算法 递归算法
在线阅读 下载PDF
基于混合模型的多类型机场航班过站时间预测 被引量:1
16
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
介质金属复合目标的电磁散射高效建模
17
作者 覃琴 周锋 化梦博 《电讯技术》 北大核心 2025年第1期127-133,共7页
为解决各向异性介质与金属复合目标电磁散射计算困难等问题,提出了一种高效的混合算法,用于模拟各向异性介质涂覆复杂目标的电磁散射。该方法基于阻抗边界条件,通过表面阻抗向量来描述介质的电磁特性,充分发挥了低频矩量法(Method of Mo... 为解决各向异性介质与金属复合目标电磁散射计算困难等问题,提出了一种高效的混合算法,用于模拟各向异性介质涂覆复杂目标的电磁散射。该方法基于阻抗边界条件,通过表面阻抗向量来描述介质的电磁特性,充分发挥了低频矩量法(Method of Moments,MoM)和高频物理光学法(Physical Optics,PO)的各自优势,以实现对介质金属复合目标进行高精度和快速的电磁仿真。通过采用阻抗边界条件(Impedance Boundary Conditions,IBC)和等效原理,研究将薄层介质涂覆目标的电磁散射问题等效为阻抗面上等效电磁流的辐射问题,从而实现了对各向异性介质涂覆复杂目标雷达截面(Radar Cross Section,RCS)的高精度快速计算。为了验证算法性能,选取了方形平板、简化飞行器及复杂卫星模型进行仿真测试。经过对比分析,所提算法的仿真结果与数值解之间的均方根误差分别为0.82 dB、1.56 dB和2.64 dB,均优于3 dB的工程应用标准误差。此外,该算法在计算消耗内存和计算时长等计算资源方面实现了超过50%的显著提升,充分验证了其准确性和实用价值。 展开更多
关键词 介质金属复合目标 电磁散射 各向异性 混合算法
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
18
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于混合遗传蚁群优化随机森林算法的激光熔覆Ni60裂纹预测与工艺参数优化
19
作者 李涛 邓林辉 +2 位作者 莫彬 石非凡 刘伟嵬 《中国机械工程》 北大核心 2025年第6期1322-1328,1337,共8页
为了探究激光熔覆Ni60过程中熔覆层裂纹与加工工艺参数之间的复杂非线性映射关系,采用熵值法结合TOPSIS综合评价法对熔覆层裂纹进行综合表征评价,并使用混合遗传蚁群算法(HGA-ACO)优化随机森林算法(RFA)超参数,搭建工艺参数与裂纹评价... 为了探究激光熔覆Ni60过程中熔覆层裂纹与加工工艺参数之间的复杂非线性映射关系,采用熵值法结合TOPSIS综合评价法对熔覆层裂纹进行综合表征评价,并使用混合遗传蚁群算法(HGA-ACO)优化随机森林算法(RFA)超参数,搭建工艺参数与裂纹评价指标间预测模型,最后使用遗传算法进行工艺参数反向寻优。研究结果表明:与ACO-RFA模型相比,HGA-ACO-RFA在预测精度与评价指标方面有显著改善,反向寻优获得的最优工艺参数可制备出几乎无裂纹的熔覆层。 展开更多
关键词 激光熔覆 裂纹 评价方法 混合遗传蚁群算法 随机森林算法
在线阅读 下载PDF
微型航空发动机控制系统综述
20
作者 付宇 范承志 +3 位作者 于军力 李泉明 林瀚 左洪福 《航空发动机》 北大核心 2025年第5期1-18,共18页
微型航空发动机控制系统是保证发动机快速起动、稳定运行以及动力输出的核心,也是满足低空经济要求的高能量密度、大载重比、长航时微小型动力装置的重要组成部分。归纳分析了微型涡喷发动机数学建模与控制方法、智能比例-积分-微分(PID... 微型航空发动机控制系统是保证发动机快速起动、稳定运行以及动力输出的核心,也是满足低空经济要求的高能量密度、大载重比、长航时微小型动力装置的重要组成部分。归纳分析了微型涡喷发动机数学建模与控制方法、智能比例-积分-微分(PID)控制方法、控制系统硬件控制器开发以及各工作过程的控制方案,同时论述了微型涡轴发动机和微型涡桨发动机的控制系统方案,并搭建了航空混合动力系统应用于微型航空动力装置的架构。未来微型航空发动机控制系统需要在非线性算法创新、智能化PID控制上取得突破;微型航空发动机混合动力系统应着重开展高能量密度电池与先进电机技术、智能能源管理研究;微型航空发动机基于全权限数字发动机控制器(FADEC)的分布式控制系统也将引入改进式串行数据总线,具备更强时延/丢包鲁棒性能且智能节点兼具故障诊断和健康管理功能。 展开更多
关键词 微型航空发动机 控制器 控制算法 航空混合动力系统 分布式控制系统
在线阅读 下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部