期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data 被引量:1
1
作者 Yu-Qiang Xu Kuan Liu +6 位作者 Bao-Lun He Tatiana Pinyaeva Bing-Shuo Li Yu-Cong Wang Jia-Jun Nie Lei Yang Fu-Xiang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3654-3672,共19页
Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a... Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a hot research topic and frontier in this field.However,due to the small number and uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk,the training model has insufficient generalization ability,and thus the prediction is not effective.In this paper,a drilling risk profile(depth domain)rich in geological and engineering information is constructed by introducing a quantitative evaluation method for drilling risk of drilled wells,which can provide sufficient risk sample data for model training and thus solve the small sample problem.For the problem of uneven distribution of drilling wells in new exploration areas,the concept of virtual wells and their deployment methods were proposed.Besides,two methods for calculating rock mechanical parameters of virtual wells were proposed,and the accuracy and applicability of the two methods are analyzed.The LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk profiles and multi-source data(e.g.,seismic,logging,and rock mechanical parameters).The model was validated to have an average relative error of 9.19%.The quantitative prediction of the drilling risk profile of the virtual well was achieved using the trained LSTM model and the calculation of the relevant parameters of the virtual well.Finally,based on the sequential Gaussian simulation method and the risk distribution of drilled and virtual wells,a regional 3D drilling risk model was constructed.The analysis of real cases shows that the addition of virtual wells can significantly improve the identification of regional drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved by up to 21%compared with the 3D risk model constructed based on drilled wells only. 展开更多
关键词 Pre-drill risk assessment Risk samples deep learning LSTM neural network 3D model
在线阅读 下载PDF
端到端机器学习代理模型构建及其在爆轰驱动问题中的应用
2
作者 柏劲松 刘洋 +1 位作者 陈翰 钟敏 《爆炸与冲击》 北大核心 2025年第5期19-30,共12页
人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象... 人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预测能力,其预测的速度剖面与工程因素估计的相对误差均小于1%,可用于高度非线性的爆炸与冲击动力学问题的快速设计、高精度预测和敏捷迭代。 展开更多
关键词 计算爆炸力学 爆轰驱动 人工智能 机器学习 端到端代理模型 深度神经网络
在线阅读 下载PDF
模块化自重构卫星智能变构规划
3
作者 贾晓冷 叶东 +1 位作者 王博 孙兆伟 《哈尔滨工业大学学报》 北大核心 2025年第4期1-9,共9页
为解决航天任务复杂化与传统定构型卫星设计之间的矛盾,航天机构着眼于研究具有灵活构型变化能力的模块化自重构卫星,其中变构规划是一个具有挑战性的研究领域。针对模块化卫星变构问题,以立方体晶格型卫星作为研究对象,基于图论提出了... 为解决航天任务复杂化与传统定构型卫星设计之间的矛盾,航天机构着眼于研究具有灵活构型变化能力的模块化自重构卫星,其中变构规划是一个具有挑战性的研究领域。针对模块化卫星变构问题,以立方体晶格型卫星作为研究对象,基于图论提出了描述卫星拓扑结构的构型矩阵和拓展矩阵。通过对卫星模块运动特点的研究,给出了求解模块运动可达空间的算法。将卫星的变构问题视为序列决策问题,基于深度强化学习理论,将变构过程建模为马尔可夫决策过程,设计了基于演员-评论家(actor-critic)模型的智能变构规划方法,建立多层神经网络以近似演员与评论家函数,通过训练神经网络,逐步改进卫星变构策略性能。仿真实验结果表明,所提出的变构方法对于给定的卫星算例,可以得到逐步改进的卫星变构策略,针对不同模块数的卫星构型具有通用性,同时相比于传统基于启发式搜索的变构方法,在变构步数、计算时间和变构成功率上具有优势,验证了所提出的智能规划方法在未来模块化卫星设计工作中具有潜在的价值。 展开更多
关键词 模块化自重构卫星 变构规划 深度强化学习 神经网络 演员-评论家模型
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法
4
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
5
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
基于生成对抗网络的两阶段探地雷达图像反演方法
6
作者 武铭泽 刘庆华 欧阳缮 《电波科学学报》 北大核心 2025年第1期141-154,共14页
在探地雷达(ground penetrating radar,GPR)应用中,反演成像是解译GPR数据信息的关键技术。现有基于深度学习的GPR图像反演技术大多应用于地下均匀介质的理想环境,然而真实环境中采集到的数据通常包含复杂的噪声与杂波信号,对反演精度... 在探地雷达(ground penetrating radar,GPR)应用中,反演成像是解译GPR数据信息的关键技术。现有基于深度学习的GPR图像反演技术大多应用于地下均匀介质的理想环境,然而真实环境中采集到的数据通常包含复杂的噪声与杂波信号,对反演精度有很大影响。针对这一问题,本文提出了一种基于生成对抗网络(generative adversarial network,GAN)的两阶段GPR图像反演网络TSInvNet,以重构真实环境中地下目标的位置分布。该方法先将GPR B-scan图像使用改进的空间自适应归一化(spatially-adaptive normalization,SPADE)生成器的去噪网络TSInvNet1进行处理后,接着送入引入置换注意力(shuffle attention,SA)模型的反演网络TSInvNet2进行反演。在模拟数据与真实数据上的实验结果表明,TSInvNet能够根据GPR B-scan图像准确反演出地下目标的位置,在具有复杂噪声与多目标情况下的反演应用中具有强鲁棒性和精确反演性能。 展开更多
关键词 探地雷达(GPR) 反演成像 深度学习 生成对抗网络(GAN) 注意力模型
在线阅读 下载PDF
基于AI深度学习的向家坝-三峡区间流域洪水预报
7
作者 崔震 郭生练 +3 位作者 向鑫 李承龙 张俊 王乐 《人民长江》 北大核心 2025年第4期49-55,共7页
为提高长江上游向家坝水库至三峡水库区间流域洪水预报精度,探索人工智能(AI)深度学习模型的可解释性途径,将特征-时间双重注意力(DA)和递归编码-解码过程(RED)耦合至长短期记忆(LSTM)神经网络,构建了DA-LSTM-RED模型;开展了向家坝水库... 为提高长江上游向家坝水库至三峡水库区间流域洪水预报精度,探索人工智能(AI)深度学习模型的可解释性途径,将特征-时间双重注意力(DA)和递归编码-解码过程(RED)耦合至长短期记忆(LSTM)神经网络,构建了DA-LSTM-RED模型;开展了向家坝水库至三峡水库区间流域1~7 d预见期的洪水模拟预报,并与LSTM-RED模型进行对比研究。结果表明:两个AI深度学习模型在训练期和检验期都取得了较好的模拟预报精度;DA-LSTM-RED模型的优势随着预见期的增加逐渐明显,7 d预见期的纳什效率系数和径流总量相对误差分别为0.94和-0.48%。DA-LSTM-RED模型能识别出与目标输出相关性较高的输入变量,不仅改善了模型的模拟预报性能,还提高了深度学习的可解释性,可为洪水模拟预报提供一种新的技术途径。 展开更多
关键词 洪水预报 注意力机制 神经网络 深度学习模型 可解释性 向家坝水库 三峡水库 长江流域
在线阅读 下载PDF
基于改进Zero−DCE模型的矿井低照度图像增强方法
8
作者 王轶玮 李晓宇 +1 位作者 翁智 白凤山 《工矿自动化》 北大核心 2025年第2期57-64,99,共9页
煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强... 煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强。使用Leaky ReLU激活函数替换Zero−DCE模型中的ReLU激活函数,以加快模型收敛速度,提升低照度图像特征学习效率;在Zero−DCE模型浅层与深层网络之间的跳跃连接处引入卷积块注意力模块(CBAM),以提高模型对图像关键特征的表达能力;在浅层网络中引入非对称卷积块(ACB),以优化模型对局部图像特征的学习能力和细节特征的表现能力;在深层网络中采用串联卷积核(CCK),以降低模型参数量和计算量,缩短模型训练时间。采用LOL公共数据集和矿井自建数据集进行实验验证,结果表明:改进Zero−DCE模型的均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)、自然图像质量评估器(NIQE)和视觉信息保真度(VIF)整体上优于典型图像增强模型,在自建数据集上的MSE和NIQE较Zero−DCE模型分别降低16.25%和2.93%,PSNR,SSIM和VIF分别提高2.87%,1.87%和17.64%;图像增强视觉效果较好,可在提高图像亮度的同时有效保留细节纹理信息,降噪效果明显;对单幅图像的推理时间为0.138 s,可实现图像实时增强。 展开更多
关键词 矿井低照度图像 图像增强 零参考深度曲线估计网络 Zero−DCE模型 无监督学习
在线阅读 下载PDF
基于轻量残差网络的高效半色调算法
9
作者 刘登峰 陈世海 +1 位作者 郭文静 柴志雷 《浙江大学学报(工学版)》 北大核心 2025年第1期62-69,212,共9页
为了解决图像半色调中处理速度慢以及半色调效果不佳的问题,提出基于轻量型残差卷积神经网络(CNN)的高效半色调算法.为了解决原始CNN平坦性退化问题,引入噪声补偿块,为模型提供抖动依赖.为了进一步提升模型性能,在损失函数中引入蓝噪声... 为了解决图像半色调中处理速度慢以及半色调效果不佳的问题,提出基于轻量型残差卷积神经网络(CNN)的高效半色调算法.为了解决原始CNN平坦性退化问题,引入噪声补偿块,为模型提供抖动依赖.为了进一步提升模型性能,在损失函数中引入蓝噪声损失;在半色调常值灰度图像时,抑制低频分量,优化高频区域的各向异性.实验结果表明,对比现有深度半色调方法,所提算法的参数量下降96.77%,在VOC测试集中结构相似性(SSIM)提升8.17%,峰值信噪比(PSNR)提升0.1333 dB,半色调图像具有蓝噪声特性,处理速度提升57.28%. 展开更多
关键词 残差网络 半色调 蓝噪声特性 深度学习 模型轻量化
在线阅读 下载PDF
基于多粒度时空注意力机制的说话人识别模型
10
作者 朱文博 吴靖 +2 位作者 金浩 叶维彰 朱珍 《声学技术》 北大核心 2025年第1期93-101,共9页
深度学习已广泛应用在说话人识别领域,但当前模型存在识别率低和模型参数复杂度高的问题,难以进行轻量化语音识别。针对此问题,文章提出一种基于多粒度时空注意力机制的说话人识别模型,该模型由多粒度混合模块、时空注意力机制模块、通... 深度学习已广泛应用在说话人识别领域,但当前模型存在识别率低和模型参数复杂度高的问题,难以进行轻量化语音识别。针对此问题,文章提出一种基于多粒度时空注意力机制的说话人识别模型,该模型由多粒度混合模块、时空注意力机制模块、通道压缩模块组成。其中多粒度混合模块和时空注意力机制模块以多尺度建模角度来捕捉局部时序上下文特征和空间关联特征信息,并通过多粒度方式耦合不同时空信息的关联特征以提高全局时空建模能力。同时,通道压缩模块通过聚合不同说话人信道以及上下文语境依赖表征以减少整体模型参数数量。在多组公开数据集上进行五重交叉验证实验,结果表明:对比主流模型,所提方法能够有效地提高说话人识别准确率、降低参数量,并达到最优的表现,在轻量化说话人识别模型方面具有重要的应用价值。 展开更多
关键词 深度学习 卷积神经网络 说话人识别 注意力机制 轻量化模型
在线阅读 下载PDF
基于量子海鸥优化和双向记忆的波浪能发电平台运动预报方法研究
11
作者 李明伟 徐瑞喆 +2 位作者 盛其虎 耿敬 张启昭 《哈尔滨工程大学学报》 北大核心 2025年第3期383-389,共7页
针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建... 针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建立了基于量子海鸥优化算法的双向长短期记忆神经网络波浪能发电平台运动网络超参优选方法;构建一种新的双向长短期记忆神经网络波浪能发电平台运动与量子海鸥优化算法相结合的波浪能发电平台运动深度学习组合预报方法。试验结果表明:与本文选择的模型相比,本文建立的预测网络具有更高的预测精度,并且量子海鸥优化算法在选择双向长短期记忆神经网络的波浪能发电平台运动的超参数时与选取的算法相比,获得了更合适的超参组合。 展开更多
关键词 波浪能发电平台运动 非线性动力系统 深度学习模型 双向长短期记忆网络 网络超参优选 智能优化算法 海鸥优化算法 量子计算
在线阅读 下载PDF
基于深度神经网络的高效人脸检测算法设计与实现
12
作者 张佳颖 李爱军 《山西电子技术》 2025年第1期41-44,共4页
为解决大数据背景下,训练和测试数据日益庞杂,神经网络模型规模不断扩大,权重参数数量猛增,网络结构日益复杂,最终导致模型效率下降等问题,本文提出了一种人脸检测算法,充分利用了稀疏的小规模多尺度卷积核的优势来提高模型效率,并且加... 为解决大数据背景下,训练和测试数据日益庞杂,神经网络模型规模不断扩大,权重参数数量猛增,网络结构日益复杂,最终导致模型效率下降等问题,本文提出了一种人脸检测算法,充分利用了稀疏的小规模多尺度卷积核的优势来提高模型效率,并且加入了1x1的过滤器来降低权重维度。经实验证明,与现有模型相比,算法在不损失精度的情况下,权重数量大幅减少。 展开更多
关键词 机器学习 深度学习 深度神经网络 人脸检测 模型压缩
在线阅读 下载PDF
DEVAE-GAN:多级认知工作负荷水平fNIRS数据生成模型
13
作者 陈利 马壮 尹钟 《电子科技》 2025年第4期31-38,58,共9页
深度学习方法在fNIRS(functional Near-Infrared Spectroscopy)的应用已成为脑机接口领域的研究热点,但较少的可用数据限制了深度学习模型的性能。文中基于DEVAE-GAN(Dual-Encoder-Variational Autoencoder-Generative Adversarial Netw... 深度学习方法在fNIRS(functional Near-Infrared Spectroscopy)的应用已成为脑机接口领域的研究热点,但较少的可用数据限制了深度学习模型的性能。文中基于DEVAE-GAN(Dual-Encoder-Variational Autoencoder-Generative Adversarial Network)提出适用于fNIRS原始信号生成的方法。将预处理好的fNIRS信号转换为时间和空间表示形式,输入到双编码器中提取时间和空间信息,拼接两条信息并送入解码器中生成样本。为了验证其有效性,在心理负荷任务的公开数据集上进行实验,将不同数量的生成样本扩充到训练数据集,并使用增强的数据集来训练深度神经网络。与多个基线生成模型的对比表明,所提方法生成的样本质量最高,使用该方法后所有被试的平均分类准确率为95.86%,与原始数据集相比提升了0.91%。实验结果表明,所提方法可以有效学习心理负荷任务fNIRS原始数据的分布,生成高质量的样本,提升深度学习模型的性能。 展开更多
关键词 FNIRS DEVAE-GAN 数据生成 心理负荷任务 深度学习 生成模型 脑机接口 深度神经网络
在线阅读 下载PDF
基于深度学习与词标签生成的病历文本后处理技术
14
作者 祁志玲 王晨宇 《信息技术》 2025年第3期56-60,共5页
为提高病历文本数据处理的效率,文中基于深度学习和词标签技术,设计了一种文本后处理技术算法。文中数据经过预处理后,被输入至卷积神经网络提取文本特征,通过构建医学词库,并根据专家评判从词库中挑选标签组成标准标签库。利用LDA主题... 为提高病历文本数据处理的效率,文中基于深度学习和词标签技术,设计了一种文本后处理技术算法。文中数据经过预处理后,被输入至卷积神经网络提取文本特征,通过构建医学词库,并根据专家评判从词库中挑选标签组成标准标签库。利用LDA主题模型获取词和标签的词-标签概率,采用双向长短时记忆网络得到词-标签概率特征,再将文本特征和词-标签概率特征进行特征拼接,使用全连接神经网络进行标签相似度筛选。与TextCNN和infoCNN模型相比,所提模型在Pr、Re和F1这三个指标上均有所提升,其中F1值分别提高了2.30%和2.22%,证明了该方案的可行性与优越性。 展开更多
关键词 病历文本 后数据处理 深度学习 卷积神经网络 LDA主题模型
在线阅读 下载PDF
基于CAM-DenseNet模型的邮轮薄板焊缝缺陷识别算法
15
作者 黎林发 王岳 《造船技术》 2025年第1期78-84,共7页
邮轮薄板焊缝的熔深和熔宽相对较小,母材与焊缝区域差异性小,焊缝表面缺陷较难判别。为准确地定位焊缝位置,提出一种将注意力机制的坐标注意力模块(Coordinate Attention Module,CAM)融入密集链接卷积网络(Densely Connected Convolutio... 邮轮薄板焊缝的熔深和熔宽相对较小,母材与焊缝区域差异性小,焊缝表面缺陷较难判别。为准确地定位焊缝位置,提出一种将注意力机制的坐标注意力模块(Coordinate Attention Module,CAM)融入密集链接卷积网络(Densely Connected Convolutional Networks,DenseNet)的邮轮薄板焊缝缺陷识别算法,建立CAM-DenseNet模型。将网络中的激活函数ReLU替换为更具有稳定性的ReLU6,并利用贝叶斯优化算法对CAM-DenseNet模型的超参数组合进行优化和选取。在焊接车间利用相机采集邮轮薄板焊缝三原色(Red Green Blue,RGB)图片,自建立邮轮薄板焊缝缺陷数据集,并按焊缝缺陷类型将数据集分为凹陷、气孔、毛刺、表面裂纹和无缺陷等5类。试验结果表明,CAM-DonseNet模型对邮轮薄板焊缝缺陷识别具有优异表现。 展开更多
关键词 邮轮 薄板 焊缝缺陷 识别算法 深度学习 密集链接卷积网络 坐标注意力模块 CAM-DenseNet模型 激活函数 贝叶斯优化算法
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
16
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
生成式深度学习在目标导向分子设计中的应用进展
17
作者 王纪峰 汪莹 《中国材料进展》 北大核心 2025年第5期424-435,450,共13页
分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综... 分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综述了生成式深度学习在分子设计中的应用进展,首先对不同分子表示方法(如SMILES、分子图和三维结构表示)进行比较,分析了各自的优缺点。随后,综合评估了3种主流生成式模型:生成对抗网络(GAN)、变分自动编码器(VAE)和去噪扩散概率模型(DDPM),并探讨了生成式模型在目标导向分子设计中的应用,重点分析不同模型在分子生成质量与性质优化方面的差异。最后,基于现有技术的研究进展,提出了未来生成式模型在分子设计领域的研究方向。 展开更多
关键词 分子生成 生成式深度学习 生成对抗网络 变分自动编码器 去噪扩散概率模型 模型性能评估框架 分子表示
在线阅读 下载PDF
基于深度学习的视频信号降噪技术研究
18
作者 李轩宇 郑天尧 王越 《电视技术》 2025年第1期220-222,共3页
视频降噪是视频处理领域的重要研究课题,对于提升视频质量、改善视觉体验具有重要意义。传统的视频降噪方法主要基于滤波和稀疏表示理论,尽管取得了一定的降噪效果,但面对日益复杂的噪声干扰,其降噪性能难以满足日益提高的视频质量需求... 视频降噪是视频处理领域的重要研究课题,对于提升视频质量、改善视觉体验具有重要意义。传统的视频降噪方法主要基于滤波和稀疏表示理论,尽管取得了一定的降噪效果,但面对日益复杂的噪声干扰,其降噪性能难以满足日益提高的视频质量需求。近年来,深度学习技术的兴起给视频降噪领域带来了新的研究思路和方法。对此,在分析视频降噪技术研究现状的基础上,重点探讨基于卷积神经网络和生成对抗网络的视频降噪方法,并从深度学习模型训练策略改进、面向不同应用场景的降噪优化等方面,对视频降噪技术的发展提出展望,以期为视频质量提升和视觉体验改善提供新的解决方案。 展开更多
关键词 视频降噪 深度学习 卷积神经网络 生成对抗网络 模型优化
在线阅读 下载PDF
基于深度学习的配电网故障智能辨识模型研究
19
作者 余凌 夏凡 +3 位作者 方仲超 朱逸 郭海东 童世兵 《科技创新与应用》 2025年第13期24-28,共5页
随着电力系统技术的进步和设备的升级,电力运行数据的积累变得越来越有规律。由于传统神经元网络本身的限制,无法较好地对故障样本进行识别。为此,提出基于深度学习的配电网故障智能辨识模型。首先,确定神经网络架构;然后结合相应的参... 随着电力系统技术的进步和设备的升级,电力运行数据的积累变得越来越有规律。由于传统神经元网络本身的限制,无法较好地对故障样本进行识别。为此,提出基于深度学习的配电网故障智能辨识模型。首先,确定神经网络架构;然后结合相应的参数优化算法对模型进行训练;最后,即可得到配电网故障辨识深度学习模型。经过仿真检验,得到的验证结果证明该文方法的有效性。 展开更多
关键词 神经元网络 配电网 深度学习模型 参数优化算法 故障智能辨识
在线阅读 下载PDF
基于深度学习的视频噪声抑制技术研究
20
作者 王辉 《电视技术》 2025年第3期208-211,共4页
针对高斯噪声、椒盐噪声及泊松噪声等常见类型进行建模,并考虑帧间噪声变化以提高模型的精确性与适应性。在此基础上,设计一种基于卷积神经网络(Convolutional Neural Network,CNN)的去噪模型。该模型通过多层卷积网络提取视频噪声特征... 针对高斯噪声、椒盐噪声及泊松噪声等常见类型进行建模,并考虑帧间噪声变化以提高模型的精确性与适应性。在此基础上,设计一种基于卷积神经网络(Convolutional Neural Network,CNN)的去噪模型。该模型通过多层卷积网络提取视频噪声特征,并结合残差连接和自适应池化等技术优化去噪效果与计算效率。实验结果表明,所建模型在低光和复杂动态监控场景下可有效提升视频质量,显著改善峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性指数(Structural Similarity Index Measure,SSIM),同时满足实时处理需求,展现出良好的应用潜力。 展开更多
关键词 视频噪声 深度学习 噪声抑制 卷积神经网络 去噪模型
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部