The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓...针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓扑,建立其数学模型,为后续优化控制奠定基础。其次,提出一种基于电压-功率灵敏度的ESOP选址规划模型,以确定其最佳安装位置。在此基础上,构建以综合费用和电压偏差最小化为目标的优化模型,实现E-SOP容量配置。该模型通过锥松弛技术转换为二阶锥规划模型,并采用粒子群算法求解。最后,通过IEEE33节点柔性互联系统的仿真验证所提策略的有效性,并在IEEE 69节点系统中进一步验证其适用性和优越性。结果表明,相比传统无E-SOP互联系统,所提策略可使电压偏差降低2.24%,日均损耗减少50.41%,综合成本下降21.74%,适用于不同规模的配电系统。展开更多
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
文摘针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓扑,建立其数学模型,为后续优化控制奠定基础。其次,提出一种基于电压-功率灵敏度的ESOP选址规划模型,以确定其最佳安装位置。在此基础上,构建以综合费用和电压偏差最小化为目标的优化模型,实现E-SOP容量配置。该模型通过锥松弛技术转换为二阶锥规划模型,并采用粒子群算法求解。最后,通过IEEE33节点柔性互联系统的仿真验证所提策略的有效性,并在IEEE 69节点系统中进一步验证其适用性和优越性。结果表明,相比传统无E-SOP互联系统,所提策略可使电压偏差降低2.24%,日均损耗减少50.41%,综合成本下降21.74%,适用于不同规模的配电系统。