期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图卷积的注意力聚焦时空融合人体活动识别研究
1
作者 刘艳 赵明 +3 位作者 马萌 曹清清 刘芳 聂凯 《传感技术学报》 北大核心 2025年第4期695-704,共10页
准确地识别人体活动数据可以为运动分析、医疗康复训练等领域提供重要帮助。鉴于现有的人体活动识别模型对于具有非欧氏空间数据特征的人体活动数据识别准确率不高的问题,提出了一种结合了图卷积、图注意力机制(GAT)和长短时记忆网络(LS... 准确地识别人体活动数据可以为运动分析、医疗康复训练等领域提供重要帮助。鉴于现有的人体活动识别模型对于具有非欧氏空间数据特征的人体活动数据识别准确率不高的问题,提出了一种结合了图卷积、图注意力机制(GAT)和长短时记忆网络(LSTM)的新型人体活动识别特征提取方法GCN-AL,并基于GCN-AL构建了人体活动识别模型GCT-net。通过在开源的DaLiAc数据集上对GCT-net模型、GAN模型和GCN模型进行对比仿真实验表明,GCT-net模型的总体准确率、平均精确率、平均召回率相较于基于图卷积、图注意力机制的GAN模型和基于图卷积的GCN模型分别提高了2.0%、2.4%、2.4%和2.3%、2.5%、3.1%,与其他最新参考文献中提出的分类模型相比,GCT-net模型在总体准确率方面也有所改进。 展开更多
关键词 可穿戴惯性传感器 人体活动识别 gct-net模型 图卷积 图注意力机制 长短时记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部