随着数字经济的快速发展,对三维重建技术的需求显著增加。然而,现有商用三维重建系统多依赖于封闭的单机或集群架构,导致灵活性和效率受限,而开源框架在绝对坐标和尺度恢复方面存在不足。对此,提出了一种基于GCP(Ground Control Point)...随着数字经济的快速发展,对三维重建技术的需求显著增加。然而,现有商用三维重建系统多依赖于封闭的单机或集群架构,导致灵活性和效率受限,而开源框架在绝对坐标和尺度恢复方面存在不足。对此,提出了一种基于GCP(Ground Control Point)辅助的Colmap框架中的SFM(Structure from Motion)算法。该算法通过构建残差方程、应用相似变换和全局光束法平差,将Colmap中SFM的自由网结果精确转换为绝对坐标。实验结果表明,该方法在计算精度上与商用系统Agisoft和大疆智图相当,且在尺度恢复上保持了较高的计算效率。所提方法不仅提升了开源三维重建系统的绝对尺度恢复能力,还为未来云端应用和大规模数据处理提供了理论和实践基础。未来将致力于实现全流程自动化三维重建的云架构,并探讨与物联网设备在三维监管中的应用前景。展开更多
为了提高侵蚀沟立体建模与监测的精度,该文采用消费级无人机作为低空遥感平台,以黄土高原一典型切沟为研究对象,通过无人机采集的倾斜影像与部署的地面控制点,采用多视立体运动恢复结构方法(structure from motion with multi-view ster...为了提高侵蚀沟立体建模与监测的精度,该文采用消费级无人机作为低空遥感平台,以黄土高原一典型切沟为研究对象,通过无人机采集的倾斜影像与部署的地面控制点,采用多视立体运动恢复结构方法(structure from motion with multi-view stereo,Sf M-MVS)构建了高精度侵蚀沟表面模型,对其建模精度与数字高程模型、正射影像等成果进行分析,并与传统正射航图建模成果进行了比较。结果表明:构建的侵蚀沟稠密点云模型的水平均方根误差约为0.096 m,高程均方根误差约为0.018 m,满足1:500比例尺数字线划图与正射影像图的要求。与正射航图建模成果相比,高程误差减小了50%;侵蚀沟稠密点云的整体密度与地面激光雷达相当,且避免了后者多站拼接造成的密度不均问题。除了沟头部分的小块内凹区域,沟壁、沟头部分没有明显的空洞,植被覆盖的区域也能够正常建模。而正射航图的建模成果中在沟头内凹部分以及植被覆盖部分存在大块的空洞;由侵蚀沟的数字高程模型与等高线图可见,构建的侵蚀沟模型能够准确地反映切沟的形态特征。总体而言,该方法在侵蚀沟的高精度建模与监测方面具有显著优势,具有推广应用的潜力。展开更多
文摘随着数字经济的快速发展,对三维重建技术的需求显著增加。然而,现有商用三维重建系统多依赖于封闭的单机或集群架构,导致灵活性和效率受限,而开源框架在绝对坐标和尺度恢复方面存在不足。对此,提出了一种基于GCP(Ground Control Point)辅助的Colmap框架中的SFM(Structure from Motion)算法。该算法通过构建残差方程、应用相似变换和全局光束法平差,将Colmap中SFM的自由网结果精确转换为绝对坐标。实验结果表明,该方法在计算精度上与商用系统Agisoft和大疆智图相当,且在尺度恢复上保持了较高的计算效率。所提方法不仅提升了开源三维重建系统的绝对尺度恢复能力,还为未来云端应用和大规模数据处理提供了理论和实践基础。未来将致力于实现全流程自动化三维重建的云架构,并探讨与物联网设备在三维监管中的应用前景。
文摘为了提高侵蚀沟立体建模与监测的精度,该文采用消费级无人机作为低空遥感平台,以黄土高原一典型切沟为研究对象,通过无人机采集的倾斜影像与部署的地面控制点,采用多视立体运动恢复结构方法(structure from motion with multi-view stereo,Sf M-MVS)构建了高精度侵蚀沟表面模型,对其建模精度与数字高程模型、正射影像等成果进行分析,并与传统正射航图建模成果进行了比较。结果表明:构建的侵蚀沟稠密点云模型的水平均方根误差约为0.096 m,高程均方根误差约为0.018 m,满足1:500比例尺数字线划图与正射影像图的要求。与正射航图建模成果相比,高程误差减小了50%;侵蚀沟稠密点云的整体密度与地面激光雷达相当,且避免了后者多站拼接造成的密度不均问题。除了沟头部分的小块内凹区域,沟壁、沟头部分没有明显的空洞,植被覆盖的区域也能够正常建模。而正射航图的建模成果中在沟头内凹部分以及植被覆盖部分存在大块的空洞;由侵蚀沟的数字高程模型与等高线图可见,构建的侵蚀沟模型能够准确地反映切沟的形态特征。总体而言,该方法在侵蚀沟的高精度建模与监测方面具有显著优势,具有推广应用的潜力。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.90412007 No.60503003)+1 种基金辽宁省自然科学基金(the Natural Science Foundation of Liaoning Province of China under Grant No.20051082)大连理工大学青年教师培训基金