期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GBDT和Google Earth Engine的冬小麦种植结构提取 被引量:10
1
作者 张海洋 张瑶 +3 位作者 田泽众 吴江梅 李民赞 刘凯迪 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第2期597-607,共11页
针对中国农田存在种植景观破碎化和复杂的种植结构这一现状,如何实现目标作物的高精度识别与制图对作物产量估算、粮食政策调整和国家粮食安全保障具有十分重要意义。基于Google Earth Engine(GEE)遥感数据处理云平台,提出一种冬小麦不... 针对中国农田存在种植景观破碎化和复杂的种植结构这一现状,如何实现目标作物的高精度识别与制图对作物产量估算、粮食政策调整和国家粮食安全保障具有十分重要意义。基于Google Earth Engine(GEE)遥感数据处理云平台,提出一种冬小麦不同生育期的种植结构提取方法,该方法以2021年覆盖目标作物关键生育期的多时相Sentinel-2影像为数据源,综合考虑光谱波段特征、光谱指数特征、纹理特征和地形特征等多维特征变量,利用GBDT(gradient boosting decision tree)分类器对不同生育期田块尺度的冬小麦种植面积和空间分布信息进行快速精准提取,并探讨了冬小麦识别的最佳生育期。此外,对比分析了常见的不同分类模型在田块尺度条件下的作物识别性能。以河南陈固镇为研究区开展实验,实验结果显示,冬小麦在起身拔节期的地物识别准确率相对较高,总体分类准确率为94.61%,Kappa系数为92.68%;在抽穗扬花期的识别精度最高,总体分类准确率为97.01%,Kappa系数为95.52%;但在灌浆乳熟期的分类精度偏低,总体分类准确率为86.23%,Kappa系数为81.33%。研究结果表明,在冬小麦抽穗扬花期,GBDT分类器能对田块尺度条件下的土地覆盖信息进行有效提取,进而取得较好的地物分类识别效果。此外,本研究将GBDT与传统分类器如随机森林(random forest,RF)、CART(classification and regression tree)和朴素贝叶斯(Naive Bayesian,NB)进行相比。结果表明,GBDT分类器的地物识别效果最佳,总体分类准确率比RF分类器和CART分类器分别提高了1.20%和5.99%,Kappa系数比RF分类器和CART分类器分别提高了1.61%和8.04%,朴素贝叶斯分类器的识别效果最差,总体分类准确率和Kappa系数分别为84.43%和78.69%。研究结果可为田块尺度作物精细提取提供有效的技术支持。 展开更多
关键词 Google Earth Engine gbdt分类器 Sentinel-2卫星传感器 冬小麦 种植结构提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部