采用推流方式改善人工水体溶解氧分布不均衡以防止富营养化时,需要对其分布进行预测来提高推流效率,为此构建了基于生成式对抗网络(GAN,Generative Adversarial Networks)和长短期记忆神经网络(LSTM,Long-Short Term Memory Network)的...采用推流方式改善人工水体溶解氧分布不均衡以防止富营养化时,需要对其分布进行预测来提高推流效率,为此构建了基于生成式对抗网络(GAN,Generative Adversarial Networks)和长短期记忆神经网络(LSTM,Long-Short Term Memory Network)的溶解氧浓度预测模型。以广西大学镜湖35 m2的一片水体区域为研究对象,采用不同电压直流水泵推流,用无人船搭载在线检测仪在一段时间内定时定点采集水体溶解氧浓度数据作为原始数据样本,并采用GAN扩充数据样本。利用遗传算法和改进的一阶滤波算法进行溶解氧的噪声数据处理,结合LSTM网络构建溶解氧浓度预测模型GF-LSTM(Genetic And Filtering Algorithm-Long Short Term Memory Network)。结果表明:相比常用的BP网络,GF-LSTM网络预测的平均误差降低了62%,均方误差降低了75%;相比传统的LSTM网络,GF-LSTM网络预测的平均误差降低了22%,均方误差降低了50%。展开更多
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷...针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。展开更多
文摘采用推流方式改善人工水体溶解氧分布不均衡以防止富营养化时,需要对其分布进行预测来提高推流效率,为此构建了基于生成式对抗网络(GAN,Generative Adversarial Networks)和长短期记忆神经网络(LSTM,Long-Short Term Memory Network)的溶解氧浓度预测模型。以广西大学镜湖35 m2的一片水体区域为研究对象,采用不同电压直流水泵推流,用无人船搭载在线检测仪在一段时间内定时定点采集水体溶解氧浓度数据作为原始数据样本,并采用GAN扩充数据样本。利用遗传算法和改进的一阶滤波算法进行溶解氧的噪声数据处理,结合LSTM网络构建溶解氧浓度预测模型GF-LSTM(Genetic And Filtering Algorithm-Long Short Term Memory Network)。结果表明:相比常用的BP网络,GF-LSTM网络预测的平均误差降低了62%,均方误差降低了75%;相比传统的LSTM网络,GF-LSTM网络预测的平均误差降低了22%,均方误差降低了50%。
基金国家自然科学基金资助项目(12004275)Shanxi Scholarship Council of China(2020-042)山西省自然科学基金资助项目(20210302123186)。
文摘【目的】为了更精准地预测5G基站的流量,分析潮汐现象,提出一种优化的生成对抗网络(generative adversarial network,GAN)模型流量预测方法,并将其用于实际基站的定时控制中。【方法】GAN的生成器利用差分演化灰狼算法优化长短时记忆网络(long short term memory networks,LSTM),判别器使用门控循环神经网络(gated recurrent unit,GRU)进行判别,生成器和判别器利用不断地对抗训练达到均衡从而提高了5G基站流量的预测精度;其次,利用改进人工蜂群优化k-means++算法,将其用于输出最优基站定时时间,达到最大限度节能的目的。【结果】实验结果表明,与现有模型相比,所提预测模型有更高的预测精度,定时控制功能可极大地节约能耗。
文摘针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。