Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法...开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法准确率不足。针对上述问题,从PRI序列还原角度出发,并结合PRI序列本质是时序序列的特点,提出GAIN-LSTM(Generative Adversarial Imputation Nets and Long Short Term Memory)网络架构,其先对丢失脉冲位置进行补全操作,恢复PRI调制规律,然后对还原后PRI序列进行调制模式识别。仿真结果表明,提出的GAIN-LSTM网络架构在脉冲丢失率70%时仍保持95%的正确识别率。展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensor...A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.展开更多
A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positio...A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.展开更多
To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to est...To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to estimate coherence parameters(CPs), i.e., time and phase calibration values in transmission and reception estimation, by separating the target returns into monostatic and bistatic echoes. However, CPs estimations exist uncertainties, which will affect the performance gain after multiradar coherent combination. The principle of coherently combining multiple radars is elaborated and the signal probability model for CPs estimation is established. On this basis, CPs Cramer-Rao bound(CRB) is derived in the closed-form, according to which the non-tight and tight upper bounds for multiple radars coherent combination performance gain are derived in the closed-form and via Monte Carlo(MC) simulations, respectively. Simulations validate the correctness of the derived CRB and gain bounds.展开更多
Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to aut...Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.展开更多
This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gai...This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinea...For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinear gain matrix based on error amplitude is proposed and two nonlinear gain functions are given. Then with the help of Bellman-Gronwall lemma, the robustness proof is derived. At last, an example is simulated and analyzed. The results show that when there exists measurement noise, the proposed learning law adjusts the learning gain matrix on line based on error amplitude, thus can make a compromise between learning convergence rate and convergence accuracy to some extent: the fast convergence rate is achieved with high gain in initial learning stage, the strong robustness and high convergence accuracy are achieved at the same time with small gain in the end learning stage, thus better learning results are obtained.展开更多
Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor sys...Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.展开更多
The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner ...The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner Mongolia. Total 40 sheep, allowed free consumption of MUS after grazing, served as a treatment group, while 30 sheep, fed only by pasture grazing, served as a control group. Ruminal fermentation parameters, consisted of pH, Bacterial Crude Protein (BCP) and ammonia nitrogen (NH3-N) were measured. In addition, numbers of five symbiotic bacteria were investigated. The results showed as follows: the average daily weight gain, concentration of NH3-N and numbers of protozoa were significantly higher (p〈0.05) in the treatment group than those in the control group. Contrastingly, no significant difference was found in BCP concentration and pH between the two groups. At the end of the experiment, the populations of Selenomonas ruminantium, Anaerovibrio lipolytica, Fibrobacter succinogenes, Ruminococcus flaveciens and Ruminococcus albus in the treatment group were significantly higher than those of the control group (p〈0.05). These results demonstrated that greater weight gain could be induced during winter in Inner Mongolia by improved nutritional status through promotion of microbial populations using urea and sugar.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
文摘开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法准确率不足。针对上述问题,从PRI序列还原角度出发,并结合PRI序列本质是时序序列的特点,提出GAIN-LSTM(Generative Adversarial Imputation Nets and Long Short Term Memory)网络架构,其先对丢失脉冲位置进行补全操作,恢复PRI调制规律,然后对还原后PRI序列进行调制模式识别。仿真结果表明,提出的GAIN-LSTM网络架构在脉冲丢失率70%时仍保持95%的正确识别率。
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
文摘A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.
基金the High Technology Research and Development Programme of China (2003AA134030)
文摘A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.
基金supported by the National Natural Science Foundation of China(61471372)
文摘To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to estimate coherence parameters(CPs), i.e., time and phase calibration values in transmission and reception estimation, by separating the target returns into monostatic and bistatic echoes. However, CPs estimations exist uncertainties, which will affect the performance gain after multiradar coherent combination. The principle of coherently combining multiple radars is elaborated and the signal probability model for CPs estimation is established. On this basis, CPs Cramer-Rao bound(CRB) is derived in the closed-form, according to which the non-tight and tight upper bounds for multiple radars coherent combination performance gain are derived in the closed-form and via Monte Carlo(MC) simulations, respectively. Simulations validate the correctness of the derived CRB and gain bounds.
基金Project(K5117827)supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(08KJB510021)supported by the Natural Science Research Council of Jiangsu Province,China+1 种基金Project(Q3117918)supported by Scientific Research Foundation for Young Teachers of Soochow University,ChinaProject(60910001)supported by National Natural Science Foundation of China
文摘Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.
基金supported by the National Defense Pre-research Foundation (9140A21041110KG0148)
文摘This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20106102110032)
文摘For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinear gain matrix based on error amplitude is proposed and two nonlinear gain functions are given. Then with the help of Bellman-Gronwall lemma, the robustness proof is derived. At last, an example is simulated and analyzed. The results show that when there exists measurement noise, the proposed learning law adjusts the learning gain matrix on line based on error amplitude, thus can make a compromise between learning convergence rate and convergence accuracy to some extent: the fast convergence rate is achieved with high gain in initial learning stage, the strong robustness and high convergence accuracy are achieved at the same time with small gain in the end learning stage, thus better learning results are obtained.
文摘Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.
基金Supported by the National Nature Science Foundation of China(31460615)the Modern Agroindustry Technology Research System(CARS-39)
文摘The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner Mongolia. Total 40 sheep, allowed free consumption of MUS after grazing, served as a treatment group, while 30 sheep, fed only by pasture grazing, served as a control group. Ruminal fermentation parameters, consisted of pH, Bacterial Crude Protein (BCP) and ammonia nitrogen (NH3-N) were measured. In addition, numbers of five symbiotic bacteria were investigated. The results showed as follows: the average daily weight gain, concentration of NH3-N and numbers of protozoa were significantly higher (p〈0.05) in the treatment group than those in the control group. Contrastingly, no significant difference was found in BCP concentration and pH between the two groups. At the end of the experiment, the populations of Selenomonas ruminantium, Anaerovibrio lipolytica, Fibrobacter succinogenes, Ruminococcus flaveciens and Ruminococcus albus in the treatment group were significantly higher than those of the control group (p〈0.05). These results demonstrated that greater weight gain could be induced during winter in Inner Mongolia by improved nutritional status through promotion of microbial populations using urea and sugar.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.