The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the r...The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon.展开更多
This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
文摘The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon.
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.