期刊文献+
共找到11,185篇文章
< 1 2 250 >
每页显示 20 50 100
基于回归分析和GA-BP神经网络算法的3D打印件弯曲性能预测 被引量:2
1
作者 白鹤 杨鑫 +4 位作者 杨瑞琦 刘亚明 赵峥璇 庞瑞 何石磊 《工程塑料应用》 CAS CSCD 北大核心 2024年第1期89-94,共6页
为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度... 为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度以及外壳厚度五种因素,制备25组试验试样,并进行弯曲性能检测。随后通过建立GA-BP神经网络模型、传统BP神经网络模型以及多元回归方程模型,分别对FDM 3D打印制件弯曲性能进行预测,并将预测数据与试验测试数据进行对比。通过对比发现,GA-BP神经网络模型预测数据与试验测试数据更为接近,其平均误差为3.71%,且误差值整体波动最小,BP神经网络模型与多元回归方程模型预测精度相差不大,BP神经网络模型预测平均误差为8.05%,多元回归方程模型预测平均误差为9.07%,但多元回归方程误差值整体波动最大。因此,采用GA遗传算法优化后的BP神经网络模型在进行FDM 3D打印制件弯曲性能预测方面具有更高的精度和更良好的稳定性。 展开更多
关键词 回归分析 ga-bp神经网络 3D打印 弯曲性能 预测
在线阅读 下载PDF
基于GA-BP神经网络算法的高密度电法非线性反演 被引量:16
2
作者 赵涛 于师建 《煤田地质与勘探》 CAS CSCD 北大核心 2017年第2期147-151,共5页
高密度电法技术在煤矿地质灾害勘探中发挥着重要的作用。近年来,以BP(Backpropagation)神经网络为代表的一类非线性反演方法被广泛运用到高密度电法的反演中。针对BP神经网络方法在高密度电法反演中存在的易陷入局部极小、收敛缓慢、反... 高密度电法技术在煤矿地质灾害勘探中发挥着重要的作用。近年来,以BP(Backpropagation)神经网络为代表的一类非线性反演方法被广泛运用到高密度电法的反演中。针对BP神经网络方法在高密度电法反演中存在的易陷入局部极小、收敛缓慢、反演精度差等问题,将BP神经网络算法与遗传算法(Genetic Algorithm,简称GA算法)联合演算,实现高密度电法的二维非线性反演。通过典型地电模型对该方法进行验证,结果表明遗传算法能有效优化BP神经网络的权值和阈值,提高了算法的全局寻优性。 展开更多
关键词 高密度电法 非线性反演 遗传算法 BP神经网络
在线阅读 下载PDF
基于GA-BP神经网络算法的FDM 3D打印制件拉伸性能预测 被引量:7
3
作者 白鹤 赵明侠 +4 位作者 袁一如 刘亚明 何石磊 庞瑞 郭晓东 《塑料工业》 CAS CSCD 北大核心 2022年第9期192-197,共6页
为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填... 为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填充密度、喷嘴温度、填充速度以及外壳厚度为输入层参数,拉伸强度为输出层参数进行训练和预测,并分析其预测精度。通过对GA-BP和BP神经网络模型的预测结果进行对比发现,GA-BP神经网络模型预测值与测试实际值更为接近,误差平均值为2.27%,而BP神经网络模型预测误差平均值为4.10%,且GA-BP神经网络模型评价指标值均优于BP神经网络模型,故GA-BP神经网络模型预测精度更高,可为提升FDM 3D打印制件力学性能,优化成型工艺,指导工业生产提供参考。 展开更多
关键词 遗传算法-反向传播神经网络 熔融沉积成型 拉伸性能 工艺参数 预测
在线阅读 下载PDF
基于GA-BP神经网络算法的输电线路舞动预警方法 被引量:18
4
作者 汉京善 吕海平 +3 位作者 李丹煜 李征 李蛟 邓元靖 《电网与清洁能源》 北大核心 2021年第4期1-7,14,共8页
针对传统BP神经网络初始权值和阈值随机产生、易陷于局部最优化、收敛速度慢以及隐含层的神经元数量不易确定等问题,采用遗传算法对BP神经网络的初始权值和阈值空间进行遗传优化,获取最优权值矩阵和阈值矩阵,并由此进行误差反向前馈神... 针对传统BP神经网络初始权值和阈值随机产生、易陷于局部最优化、收敛速度慢以及隐含层的神经元数量不易确定等问题,采用遗传算法对BP神经网络的初始权值和阈值空间进行遗传优化,获取最优权值矩阵和阈值矩阵,并由此进行误差反向前馈神经网络的训练学习,同时采用试错法,结合相关公式,缩小隐含层神经元数量范围,寻找最优神经元数量,建立GA-BP神经网络模型,对输电线路舞动的发生进行预警。通过对相关地区输电线路舞动历史数据进行了算例分析,对比其他机器学习算法的预测结果准确性,结果表明:改进的GA-BP神经网络能更准确有效地预测输电线路舞动的发生情况;为防止大规模舞动灾害提供有力了保障,进一步提高了电网抵御自然灾害的能力。 展开更多
关键词 遗传算法 BP神经网络 机器学习 隐含层 导线舞动
在线阅读 下载PDF
基于GA-BP神经网络算法的高精确度电阻测量系统
5
作者 张文旭 梁继然 许延雷 《传感技术学报》 CAS CSCD 北大核心 2019年第11期1750-1755,共6页
在工业生产中,为了监测设备的温度、压力等参数值,需要对敏感元件的阻值进行精确测量。然而,精密电阻测量电路通常比较复杂,而且敏感元件的阻值与被测电压之间的关系不是简单的线性关系,如果采用线性拟合测量,测量结果会有一定的误差。... 在工业生产中,为了监测设备的温度、压力等参数值,需要对敏感元件的阻值进行精确测量。然而,精密电阻测量电路通常比较复杂,而且敏感元件的阻值与被测电压之间的关系不是简单的线性关系,如果采用线性拟合测量,测量结果会有一定的误差。为了解决这一问题,采用GA-BP算法来降低系统的测量误差,该算法可以利用给定的数据进行自拟合,解决电路噪声问题。利用该算法设计了一个基于STM32F407单片机的高精度电阻测量系统,并将GA-BP网络参数固化到软件程序中。实验结果表明,在不增加系统电路复杂度的前提下,系统的电阻测量误差可降低到0.1%左右。 展开更多
关键词 电阻测量 网络拟合 ga-bp神经网络 嵌入式系统 STM32
在线阅读 下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:2
6
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
7
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于深度神经网络的遗传算法对抗攻击 被引量:1
8
作者 范海菊 马锦程 李名 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期82-90,I0007,共10页
深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个... 深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个基于卷积神经网络图像分类器的成功攻击.实验结果表明在对3个分类模型进行单像素攻击时,67.92%的CIFAR-10数据集中的自然图像可以被扰动到至少一个目标类,平均置信度为79.57%,攻击效果会随着修改像素的增加进一步提升.此外,相比于LSA和FGSM方法,攻击效果有着显著提升. 展开更多
关键词 卷积神经网络 遗传算法 对抗攻击 图像分类 信息安全
在线阅读 下载PDF
基于GA-BP神经网络的EISCAP传感器数据预测算法研究
9
作者 冯臻夫 张婉青 陈东 《仪表技术与传感器》 北大核心 2025年第7期121-126,共6页
针对传统测量拟合方法速度慢、稳定性差、耗时较长及精度较低等问题,文中将遗传算法和BP神经网络相结合,利用遗传算法优化BP神经网络的权值及阈值寻找最优解,在此基础上提出了一种基于GA-BP神经网络的EISCAP传感器数据预测方法。在室温... 针对传统测量拟合方法速度慢、稳定性差、耗时较长及精度较低等问题,文中将遗传算法和BP神经网络相结合,利用遗传算法优化BP神经网络的权值及阈值寻找最优解,在此基础上提出了一种基于GA-BP神经网络的EISCAP传感器数据预测方法。在室温条件下EISCAP传感器测量不同pH值的缓冲溶液,对实验样本数据进行归一化处理,以从实验样本数据中提取的偏置电压大小作为输入特征量,以EISCAP精确检测出的幅值大小作为输出特征量,构建GA-BP神经网络模型,对实验样本数据进行训练和预测。结果表明:与传统的拟合方法相比,GA-BP神经网络算法预测误差较小,平均绝对误差MAE降低了0.61%,均方根误差RMSE降低了0.05%~0.72%。GA-BP神经网络模型预测效果好,在同等采样数据量条件下,较传统的插值法大大提升了测量效率和测量精度,具有良好的适用性和灵活性。 展开更多
关键词 BP神经网络 遗传算法 EISCAP传感器 幅值检测 预测模型
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
10
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于模糊神经网络-粒子群优化算法的电机直驱操动机构速度环控制参数优化方法
11
作者 黎卫国 马丽娟 +4 位作者 张长虹 杨旭 李明洋 肖曦 王潇 《电气工程学报》 北大核心 2025年第3期20-27,共8页
电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(F... 电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(Fuzzy neural network,FNN)-粒子群优化(Particle swarm optimization,PSO)算法的电机直驱操动机构速度环控制参数优化方法,标准PSO算法用于优化电机直驱操动机构中永磁同步电机(Permanent magnet synchronous motor,PMSM)控制系统的速度环PI(Proportional integral,PI)参数,而FNN算法用于优化PSO算法中的惯性权重。首先,建立PMSM数学模型,并分析速度环PI控制器参数设计方法;其次,基于标准PSO算法对电机直驱操动机构中PMSM控制系统速度环PI控制器参数优化进行分析;随后,结合FNN算法对标准PSO算法中的惯性权重进行优化;最终,通过试验验证了所提方法的有效性。试验结果表明,该方法能够提高电机直驱操动机构控制系统速度环性能,为电机直驱操动机构在面对系统惯量变化时的控制性能提升提供了一种有效的解决方案。 展开更多
关键词 高压断路器 操动机构 模糊神经网络 粒子群算法
在线阅读 下载PDF
基于图神经网络铁路桥梁主梁推荐算法研究
12
作者 柏华军 郑洪 +1 位作者 陈瓴 桂浩 《铁道标准设计》 北大核心 2025年第8期72-79,共8页
随着智能技术的发展,铁路桥跨方案布孔设计一直朝着一体化、数字化、可视化、智能化的方向发展。国内外针对铁路桥梁智能设计的研究主要集中在铁路桥梁模型构造与协同设计方向,关于桥梁智能布孔设计还属于技术空白。在此背景下,研发基... 随着智能技术的发展,铁路桥跨方案布孔设计一直朝着一体化、数字化、可视化、智能化的方向发展。国内外针对铁路桥梁智能设计的研究主要集中在铁路桥梁模型构造与协同设计方向,关于桥梁智能布孔设计还属于技术空白。在此背景下,研发基于图神经网络AGOAM模型的铁路桥梁主梁推荐算法,实现桥跨范围控制点的主梁选型,为桥跨方案智能决策算法提供支撑。深入研究前沿智能推荐技术,提出由预处理层、子图构建层、节点匹配层、图池化层和图匹配层组成的AGOAM模型,基于控制点-梁型的内外部属性交互技术和融合注意力机制的本体特征加强技术,实现控制点和梁型图谱嵌入表示优化和基于相识度算法控制点与梁型高效匹配。模型在验证集AUC、LogLoss、Precision、NDCG指标表明,算法准确度、排序能力和推荐质量效果良好。 展开更多
关键词 铁路桥梁 布孔设计 神经网络 智能设计 注意力机制 推荐算法 相识度算法
在线阅读 下载PDF
基于遗传算法BP神经网络的猫粮糊化特性研究
13
作者 张琦 许耀辉 +6 位作者 陈阳 韩栋梁 张润哲 严骅彬 Lela Susilawati 魏文广 奚小波 《中国饲料》 北大核心 2025年第9期87-92,共6页
为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/... 为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/21)进行研究。结果表明:随着转子转速的增加,峰值黏度、谷值黏度、终值黏度显著降低,衰减值变小,热糊稳定性增强。随着保持温度的增加,峰值黏度增加,谷值黏度和终值黏度先上升后下降,淀粉糊稳定性变差,原料更容易糊化。随着猫粮质量的增加,糊化温度降低,峰值黏度、谷值黏度、终值黏度增大,淀粉糊稳定性降低,凝胶性增强。另外,以本试验数据为基础,提出一种基于遗传算法的神经网络预测峰值黏度的模型。 展开更多
关键词 转速 温度 淀粉 糊化特性 神经网络 遗传算法 快速黏度分析仪(RVA)
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的RSS指纹定位
14
作者 刘伟 李艾龙 +1 位作者 李卓 王智豪 《电子测量技术》 北大核心 2025年第14期162-175,共14页
室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO... 室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。 展开更多
关键词 室内定位 RSSI测距 BP神经网络 灰狼算法 粒子群算法
在线阅读 下载PDF
改进黑翅鸢算法优化神经网络的室内定位
15
作者 杨晶晶 万里宏 +2 位作者 张雪明 麦鴚 雷俊杰 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期229-237,共9页
针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagati... 针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagation,BP)神经网络的室内定位算法。分别引入Tent混沌映射、透镜成像反向学习策略和黄金正弦策略优化黑翅鸢算法,通过基准测试函数测试证实了IBKA拥有更好的性能,通过IBKA优化神经网络算法的初始权值和阈值建立IBKA-BP神经网络测距模型。在实验室内采集RSSI信号样本数据进行分析,结果表明所提IBKA-BP优化算法均方根误差为21.42 cm,小于PLM、GWO-BP、BKA-BP和ISSA-BP的63.25、47.04、33.77、28.78 cm,且收敛速度更快,在复杂室内环境下定位性能更好。 展开更多
关键词 改进黑翅鸢算法 BP神经网络 RSSI测距算法 路径损耗模型
在线阅读 下载PDF
利用非支配排序遗传算法优化卷积神经网络研究节点地震仪RFID测距
16
作者 庞聪 林春晓 +3 位作者 李忠亚 江勇 陈国庆 宋莹莹 《大地测量与地球动力学》 北大核心 2025年第10期1079-1084,共6页
针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)... 针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)的2个优化目标函数,其自变量统一为学习率下降因子、初始学习率、批大小等一维卷积神经网络(1D-CNN)超参数,因变量分别为网络预测结果与理论值的决定系数(R^(2))和平均偏差误差(MBE);最后以最佳超参数值构成NSGAⅢ-1D-CNN新模型,以提高RFID测距模型的稳定性和精确度。实验结果表明,新模型在100轮循环实验下的节点地震仪RFID测距误差较小,在R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、MBE等多个指标上均表现优异,均值分别为0.9779、0.0586 m、0.0472 m、-0.0013 m,相对于其他模型具有更高的测距定位精度,在野外物探中具有一定应用价值。 展开更多
关键词 节点地震仪 RFID测距 一维卷积神经网络 超参数优化 非支配排序遗传算法 多目标优化
在线阅读 下载PDF
基于遗传算法优化BP神经网络的沥青混合料性能预测方法 被引量:2
17
作者 盛佳豪 柳力 +1 位作者 刘朝晖 潘博洋 《科学技术与工程》 北大核心 2025年第3期1214-1224,共11页
为实现沥青混合料性能的快速可靠预测,从材料组成设计角度出发,提出了一种基于遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络的沥青混合料性能预测方法。首先运用灰关联分析方法对多维输入变量进行降维处理... 为实现沥青混合料性能的快速可靠预测,从材料组成设计角度出发,提出了一种基于遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络的沥青混合料性能预测方法。首先运用灰关联分析方法对多维输入变量进行降维处理,确定了沥青混合料性能的核心影响因素,然后结合遗传算法(GA),构建了以核心影响因素为输入层、沥青混合料性能为输出层的GA-BP神经网络预测模型,再对模型进行训练验证分析与预测泛化应用,同时与BP神经网络的训练效果和预测精度进行对比,验证GA-BP神经网络模型的准确性。研究结果表明:空隙率、油石比、公称最大粒径、4.75 mm通过率、沥青种类、软化点、针入度、延度等8项性能特征的灰关联度r>0.6,对沥青混合料性能影响显著;相比于BP神经网络模型,经过GA优化后的BP神经网络模型的均方根误差(root mean square error,RMSE)降低了16%~31%,平均绝对误差(mean absolute error,MAE)降低了15%~24%,R^(2)值提升了0.01~0.27,说明其具有更好的学习拟合能力;在对沥青混合料动态模量、动稳定度、残留稳定度、劈裂抗拉强度比和极限弯拉应变的预测精度上分别提高了35.26%、47.78%、23.13%、31.92%、35.75%,说明GA-BP神经网络模型具有更强的泛化应用能力。研究成果为实现沥青混合料性能的快速预测、指导沥青混合料材料组成设计提供重要参考。 展开更多
关键词 道路工程 性能预测 ga-bp神经网络 沥青混合料 灰关联分析
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
18
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-BP神经网络 遗传算法
在线阅读 下载PDF
神经网络加速PSO算法的超材料吸波体设计 被引量:1
19
作者 戴书浩 孙俊 +2 位作者 彭艺 罗会龙 张莉 《传感器与微系统》 北大核心 2025年第2期90-94,共5页
在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料... 在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料吸波体的电磁参数进行准确地预测,其预测结果与仿真结果均方误差(MSE)不超过0.0011。在PSO算法对结构参数空间进行搜索的过程中,预测结果被用于算法优化过程中的适应度计算,PSO算法能够根据不同的适应度值自动调节结构参数以到达电磁波宽频带吸收的目的。该方法将设计耗时缩短为全波仿真设计耗时的0.3%。通过该方法设计的超材料吸波体在8.5~17.9 GHz频段内的吸波率大于90%,吸波带宽为9.4 GHz。此外该方法优化过程避免了人工干扰,能够移植到超材料的其他应用设计中。 展开更多
关键词 超材料吸波体 神经网络 粒子群优化算法
在线阅读 下载PDF
基于GA-BP神经网络的声学覆盖层吸声性能预测 被引量:1
20
作者 阮久文 陶猛 王广玮 《机械设计与制造》 北大核心 2025年第4期1-5,共5页
提出了一种基于遗传算法优化的BP神经网络(GA-BP)对声学覆盖层吸声性能的预测的方法。基于含圆柱型空腔吸声覆盖层的二维解析理论的简化计算方法,通过使用吸声覆盖层粘弹性阻尼材料的密度、杨氏模量、泊松比、损失因子等参数推导出圆柱... 提出了一种基于遗传算法优化的BP神经网络(GA-BP)对声学覆盖层吸声性能的预测的方法。基于含圆柱型空腔吸声覆盖层的二维解析理论的简化计算方法,通过使用吸声覆盖层粘弹性阻尼材料的密度、杨氏模量、泊松比、损失因子等参数推导出圆柱-圆台组合型空腔覆盖层的反射系数,生成样本集。将GA-BP的适应度函数中搭建BP神经网络(BPNN)的部分用一种计算方法代替,用该方法计算后的实际值与预测值的误差的平方和作为适应度函数值,减少了GA-BP的寻优时间。预测结果表明GA-BP预测模型的对含圆柱空腔吸声覆盖层的性能预测是可行的,GA-BP预测值优于BPNN,稳定性更高,更接近于理论值。 展开更多
关键词 圆柱-圆台组合型空腔覆盖层 二维解析理论 遗传算法 BP神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部