期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于遗传神经网络混合模型预测马尾松毛虫发生量的研究 被引量:1
1
作者 陈绘画 朱寿燕 周泽华 《安徽农业科学》 CAS 北大核心 2009年第12期5548-5551,共4页
根据相关系数法、均生函数法及逐步回归法分别选取与马尾松毛虫有虫面积、虫口密度、虫株率相关关系密切的气象因子和延拓均生函数序列作为各预测模型的输入特征,分别建立马尾松毛虫有虫面积、虫口密度、虫株率与气象因子的GA-BP混合模... 根据相关系数法、均生函数法及逐步回归法分别选取与马尾松毛虫有虫面积、虫口密度、虫株率相关关系密切的气象因子和延拓均生函数序列作为各预测模型的输入特征,分别建立马尾松毛虫有虫面积、虫口密度、虫株率与气象因子的GA-BP混合模型。结果表明,所建立的各GA-BP混合预测模型,具有令人满意的拟合精度和预测精度。当隐含层神经元个数为13个,预报因子数为6个时,3组预留有虫面积的平均预测误差为4.41%;虫口密度GA-BP混合模型的隐层神经元个数为9个,预报因子数为4个时,3组预留样本的平均预测误差为2.17%;虫株率GA-BP混合模型的隐层神经元个数为9个,预报因子数为4个时,3组预留样本的平均预测误差为4.25%。 展开更多
关键词 马尾松毛虫 遗传神经网络 发生量 预测预报 ga-bp混合模型
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure ga-bp hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部