为实现完整熔池表面形貌三维传感,构建了双棱镜单摄像机立体视觉传感系统.针对熔池图像纹理缺乏造成的立体匹配困难的问题,引入了全局优化的变分立体匹配算法,通过建立包含灰度差异数据项和空间连续性约束项的能量函数的可行性泛函,经...为实现完整熔池表面形貌三维传感,构建了双棱镜单摄像机立体视觉传感系统.针对熔池图像纹理缺乏造成的立体匹配困难的问题,引入了全局优化的变分立体匹配算法,通过建立包含灰度差异数据项和空间连续性约束项的能量函数的可行性泛函,经过迭代求解获得具有丰富细节的熔池表面稠密视差图.对自制非标准凹面形状进行立体匹配和三维重建,结果表明,宽度误差小于3.16%,深度误差小于4.82%.基于该算法实现了熔化极气体保护焊(gas metal arc welding,GMAW)的堆焊及V形坡口对焊条件下,不同熔透状态熔池稠密视差图计算和表面形貌的三维重建.展开更多
针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧...针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。展开更多
光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火...光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火焰辐射强度求解的过程中,难以保证求解的非负性和准确性。非负最小二乘算法(non-negative least squares,NNLS)可以保证求解的非负性,但是计算效率太低。本文提出将最小二乘残差方法(least square minimal residual,LSMR)用于火焰光场成像三维温度场重建,并研究其重建精度、计算效率、抗噪性能等指标。仿真实验表明,LSMR和NNLS算法可以在不同噪声水平下保证求解火焰辐射强度的非负性。在噪声为5%、10%、15%和20%的情况下,LSMR和NNLS算法对辐射强度的求解精度均比LSQR提高了10%以上,且LSMR算法的求解时间比LSQR和NNLS分别降低了一个数量级和四个数量级。可见,LSMR算法可以在保证求解精度的情况下大幅提高运算效率。最后用LSMR算法对模拟光场火焰进行温度场重建,在不同噪声水平下,平均相对误差都保持在1.2%以内,验证了LSMR算法在重建时的准确性和可靠性。展开更多
文摘为实现完整熔池表面形貌三维传感,构建了双棱镜单摄像机立体视觉传感系统.针对熔池图像纹理缺乏造成的立体匹配困难的问题,引入了全局优化的变分立体匹配算法,通过建立包含灰度差异数据项和空间连续性约束项的能量函数的可行性泛函,经过迭代求解获得具有丰富细节的熔池表面稠密视差图.对自制非标准凹面形状进行立体匹配和三维重建,结果表明,宽度误差小于3.16%,深度误差小于4.82%.基于该算法实现了熔化极气体保护焊(gas metal arc welding,GMAW)的堆焊及V形坡口对焊条件下,不同熔透状态熔池稠密视差图计算和表面形貌的三维重建.
文摘针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。
文摘光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火焰辐射强度求解的过程中,难以保证求解的非负性和准确性。非负最小二乘算法(non-negative least squares,NNLS)可以保证求解的非负性,但是计算效率太低。本文提出将最小二乘残差方法(least square minimal residual,LSMR)用于火焰光场成像三维温度场重建,并研究其重建精度、计算效率、抗噪性能等指标。仿真实验表明,LSMR和NNLS算法可以在不同噪声水平下保证求解火焰辐射强度的非负性。在噪声为5%、10%、15%和20%的情况下,LSMR和NNLS算法对辐射强度的求解精度均比LSQR提高了10%以上,且LSMR算法的求解时间比LSQR和NNLS分别降低了一个数量级和四个数量级。可见,LSMR算法可以在保证求解精度的情况下大幅提高运算效率。最后用LSMR算法对模拟光场火焰进行温度场重建,在不同噪声水平下,平均相对误差都保持在1.2%以内,验证了LSMR算法在重建时的准确性和可靠性。