期刊文献+
共找到2,411篇文章
< 1 2 121 >
每页显示 20 50 100
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
1
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
在线阅读 下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:14
2
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
3
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
Adaptive neural network based sliding mode altitude control for a quadrotor UAV 被引量:4
4
作者 Hadi RAZMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2654-2663,共10页
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ... Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results. 展开更多
关键词 adaptive sliding mode controller analog neural network(ANN) altitude control of quadrotor parametric uncertainty
在线阅读 下载PDF
Adaptive fuzzy sliding mode control for robotic airship with model uncertainty and external disturbance 被引量:6
5
作者 Yueneng Yang Jie Wu Wei Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期250-255,共6页
An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approac... An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances. 展开更多
关键词 flight control sliding mode fuzzy system adaptation law station keeping airship.
在线阅读 下载PDF
Fuzzy robust sliding mode control of a class of uncertain systems 被引量:7
6
作者 REN Li-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2296-2304,共9页
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed... Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances. 展开更多
关键词 uncertain systems robust control fuzzy sliding mode control CHATTERING
在线阅读 下载PDF
Robust sliding mode control for uncertain networked control system with two-channel packet dropouts 被引量:5
7
作者 ZHANG Yu REN Li-tong +2 位作者 XIE Shou-sheng ZHANG Le-di ZHOU Bin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期881-892,共12页
A robust sliding mode control algorithm is developed for a class of networked control system with packet dropouts in both sensor-controller channel and controller-actuator channel,and at the same time mismatched param... A robust sliding mode control algorithm is developed for a class of networked control system with packet dropouts in both sensor-controller channel and controller-actuator channel,and at the same time mismatched parametric uncertainty and external disturbance are also taken into consideration.A two-level Bernoulli process has been used to describe the packet dropouts existing in both channels.A novel integral sliding surface is proposed,based on which the H∞performance of system sliding mode motion is analyzed.Then the sufficient condition for system stability and robustness is derived in the form of linear matrix inequality(LMI).A sliding mode controller is designed which can guarantee a relatively ideal system dynamic performance and has certain robustness against unknown parameter perturbations and external disturbances.The results from numerical simulations are presented to corroborate the validity of the proposed controller. 展开更多
关键词 networked control system sliding mode control packet dropout UNCERTAINTY
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
8
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 fuzzy logic neural networks Adaptive control Nonlinear dynamic system.
在线阅读 下载PDF
Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints 被引量:6
9
作者 Qingchun Li Wensheng Zhang +1 位作者 Gang Han Yuan Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期664-679,共16页
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow... In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law. 展开更多
关键词 guidance law sliding mode control fuzzy logic impact angle
在线阅读 下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor 被引量:2
10
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
在线阅读 下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
11
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
在线阅读 下载PDF
Intelligent Flow Control Technique of ABR Service in ATM Networks Based on Fuzzy Neural Networks 被引量:7
12
作者 Zhang Liangjie Li Yanda Li Qinghua Wang Pu (Dept of Automation, Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期3-9,共7页
InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQing... InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQinghuaWangPu(DeptofA... 展开更多
关键词 模糊神经网络 流量控制 异步传输网 反馈 可用位率
在线阅读 下载PDF
Fuzzy Control Based on Neural Networks for Armored Vehicle Electric Drive System 被引量:1
13
作者 马晓军 李华 +1 位作者 张剑 张豫南 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第3期169-172,共4页
关键词 装甲车 电力驱动 模糊控制 神经网络 鲁棒性
在线阅读 下载PDF
Adaptive fuzzy integral sliding mode pressure control for cutter feeding system of trench cutter
14
作者 田启岩 魏建华 +1 位作者 方锦辉 国凯 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3302-3311,共10页
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ... A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa. 展开更多
关键词 electro-hydraulic system cutter feeding system feeding pressure control adaptive fuzzy integral sliding mode control
在线阅读 下载PDF
Robust fuzzy sliding-mode control for T-S model based permanent magnet synchronous motor
15
作者 张细政 王耀南 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期68-73,共6页
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme... A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller. 展开更多
关键词 PERMANENT MAGNET SYNCHRONOUS motor (PMSM) uncertain T-S nonlinear systems sliding-mode control fuzzy sliding surfaces linear matrix INEQUALITIES (LMIs)
在线阅读 下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
16
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
Decentralized direct adaptive neural network control for a class of interconnected systems 被引量:2
17
作者 Zhang Tianping Mei Jiandong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期374-380,共7页
The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of slid... The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 neural networks decentralized control sliding mode control adaptive control global stability.
在线阅读 下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
18
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
19
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) Inference engines Learning algorithms Mathematical models Multivariable control systems neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones 被引量:14
20
作者 ZHANG Tian-Ping YI Yang 《自动化学报》 EI CSCD 北大核心 2007年第1期96-100,共5页
A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle o... A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero. 展开更多
关键词 DEAD-ZONE fuzzy control adaptive control sliding mode control Nussbaum function
在线阅读 下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部