Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper...Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.展开更多
The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score fun...The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming ...In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.展开更多
From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the de...From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.展开更多
With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision p...With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision problem. The incomplete linguistic judgment matrix is transformed into incomplete fuzzy judgment matrix and an optimization model is developed on the basis of incomplete fuzzy judgment matrix provided by the decision maker and the decision matrix to determine attribute weights by Lagrange multiplier method. Then the overall values of all alternatives are calculated to rank them. A numerical example is given to illustrate the feasibility and practicality of the proposed method.展开更多
A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this ...A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly know...This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.展开更多
Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguis...Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is p...In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50047,2023JJ40306)the Research Foundation of Education Bureau of Hunan Province(23A0494,20B260)the Key R&D Projects of Hunan Province(2019SK2331)。
文摘Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.
基金supported by the National Science Fund for Distinguished Young Scholars of China(70625005).
文摘The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
基金the National Natural Science Foundation of China (70571041).
文摘In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.
文摘From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.
基金the National Natural Science Foundation of China (70701008)National Science Foundationfor Distinguished Young Scholars of China (70525002)
文摘With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision problem. The incomplete linguistic judgment matrix is transformed into incomplete fuzzy judgment matrix and an optimization model is developed on the basis of incomplete fuzzy judgment matrix provided by the decision maker and the decision matrix to determine attribute weights by Lagrange multiplier method. Then the overall values of all alternatives are calculated to rank them. A numerical example is given to illustrate the feasibility and practicality of the proposed method.
基金supported by the National Key Basic Research Program of China(973 Program)(2012CB725402)the National High-Tech R&D Program of China(863 Program)(SS2014AA110303)the Science Foundation for Post-doctoral Scientists of Jiangsu Province(1301011A)
文摘A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China (70473037)the Key Project of National Development and Reform Commission (1009-213011)
文摘This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.
基金supported by the National Natural Science Foundation of China(61273275)
文摘Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金supported by the National Natural Science Foundation of China(71901214).
文摘In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.