期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
WRF simulation of typhoon precipitation:A case study of Typhoon Doksuri in Fujian Province,China
1
作者 WU Jingwen YAN Youyi +5 位作者 YIN Fangxu YOU Jiewen ZHUANG Yao GUAN Xiaojun JIANG Lizhi GAO Lu 《水利水电技术(中英文)》 2025年第11期1-20,共20页
[Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in sou... [Objective]Precipitation events caused by Super Typhoon Doksuri in Fujian Province were simulated and evaluated based on the WRF model to provide a reference for typhoon precipitation simulation and forecasting in southeast coastal areas of China.[Methods]The next-generation mesoscale numerical weather prediction model WRF V4.3(The Weather Research and Forecasting Model)was used to simulate the precipitation caused by Typhoon Doksuri in Fujian Province in 2023.Observations from 86 meteorological stations with hourly rainfall records were used to evaluate the model’s performance.Six evaluation indices were used,including the correlation coefficient(R),root mean square error(RMSE),mean absolute error(MAE),equitable threat score(ETS),probability of detection(POD),and false alarm ratio(FAR).[Results](1)The temporal and spatial evolution of precipitation during Typhoon Doksuri was effectively captured by the WRF model.Precipitation intensity increased gradually from July 27 to 29,2023,with the heaviest rainfall concentrated in the northern and eastern coastal areas of Fujian Province.(2)Significant differences in model performance were observed in terms of R,RMSE,and MAE.The largest errors occurred in Putian City,while smaller errors were found in southwestern Fujian Province.The evaluation result of all six indices showed that the WRF model performed best in simulating daily precipitation compared to hourly,three-hourly,six-hourly,and twelve-hourly precipitation.(3)The R95p index indicated that the WRF model successfully captured the overall spatial distribution of extreme precipitation.However,extreme precipitation intensity was overestimated in certain coastal areas.(4)Despite accurately identifying the coastal regions of Fujian as being most affected,the WRF model failed to accurately simulate the spatial distribution and intensity of precipitation.The simulated precipitation centers showed discrepancies when compared with the observed centers.[Conclusion]Although the WRF model underestimated hourly precipitation,it successfully captured the temporal evolution and spatial distribution of rainfall caused by Typhoon Doksuri in Fujian Province.It reproduced the heavy rainfall centers in central Fujian Province,with daily precipitation peaks reaching up to 350 mm.This highlighted the severity of extreme rainfall caused by Typhoon Doksuri. 展开更多
关键词 WRF model typhoon precipitation Typhoon Doksuri fujian province China numerical simulation rainfall extreme precipitation climate change
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部