Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump a...Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.展开更多
Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that...Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.展开更多
A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the f...A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.展开更多
A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear diff...A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear differential equations for electron orbits and fields of TE 11 mode in a cylindrical waveguide are solved numerically by the Runge–Kutta algorithm with averages calculated by the Gaussian quadrature technique. Self-fields and space-charge effects are neglected, and the electron beam is assumed to be cold and slippage is ignored. The parameters correspond to the Compton regime. Evolution of the radiation power and growth rate along the wiggler is studied. Ion-channel density is chosen to obtain optimum efficiency. Simulations are preformed for the FEL operating in the neighborhood of 35 GHz and 16.5 GHz for the electron beam energies of 250 keV and 400 keV, respectively. The result of the saturated efficiency was found to be in good agreement with the simple estimation based on the phase-trapping model.展开更多
The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron tr...The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron trajectories is performed by solving the equations of motion. Our results show that the presence of a corrugated channel shifts the resonance frequency to smaller values of ion channel frequency. The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived. The dispersion relation characteristic is analyzed in detail by numerical solution. Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.展开更多
The generation of hollow atoms will reduce the probability of light absorption and provide a high-quality diffraction image in the experiment. In this paper, we calculated the ionization rate of the Kr atom under x-ra...The generation of hollow atoms will reduce the probability of light absorption and provide a high-quality diffraction image in the experiment. In this paper, we calculated the ionization rate of the Kr atom under x-ray free-electron laser(XFEL) using Hartree–Fock–Slater model and simulated the ionization model of Kr atom using Monte–Carlo method to determine the response of the hollow atom of Kr atom to the XFEL photon energy. Calculating the correlation between the total photoionization cross-section of the ground state of Kr atom and the photon energy, we determined three particular photon energies of 1.75 ke V, 1.90 ke V, and 14.30 ke V. The dynamics simulation under the experimental condition's17.50 ke V photon energy was achieved by implementing the Monte–Carlo method and calibrating the photon flux modeling parameters. Consequently, our calculated data are more consistent with experimental phenomena than previous theoretical studies. The saturable absorption of Kr at 1.75 ke V, 1.90 ke V, 14.30 ke V, and 17.50 ke V energies was further investigated by using the optimized photon flux model theory. We compared the statistics on main ionization paths under those four specific photon energies and calculated the population changes of various Kr hollow atoms with different configurations.The results demonstrate that the population of hollow atoms produced at the critical ionization photon energy is high. Furthermore, the change of population with respect to position is smooth, which shows a significant difference between the generation mode of ions with low and high photon energies. The result is important for the study of medium-and high-Z element hollow atoms, which has substantial implications for the study of hollow atoms with medium and high charge states, as well as for the scaling of photon energy of free electron lasers.展开更多
The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron t...The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.展开更多
Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral cove...Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.展开更多
Coherent light with orbital angular momentum(OAM)is of great interest.Recently,OAM light generation by coupling a relativistic electron beam with a Gaussian mode laser pulse at the high harmonics of a helical undulato...Coherent light with orbital angular momentum(OAM)is of great interest.Recently,OAM light generation by coupling a relativistic electron beam with a Gaussian mode laser pulse at the high harmonics of a helical undulator has been demonstrated experimentally.In this paper,the possibility of delivering coherent OAM light at the 3^(rd)harmonic of the Gaussian mode seed laser is discussed for the Shanghai deep ultraviolet freeelectron laser(SDUV-FEL).Considerations are given on the experiment setup,the expected performance and the possible measurement method.展开更多
Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single...Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single electron in the combined wiggler and the periodic ionbchannel fields is solved and the classes of possible trajectories in this configuration are discussed. The gain equation for the FEL in the low-gain-per-pass lirnit is obtained by adding the effect of the periodic ion channel. Numerical calculation is employed to analyse the gain induced by the effects of the non-uniform ion density. The variation of gain with ion-channel density is demonstrated. It is shown that there is a gain enhancement for group I orbits in the presence of a non-uniform ion-channel but not in a uniform one. It is also shown that periodic ion-channel guiding is used to reach the maximum peak gain in a low ion-channel frequency (low ion density).展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
A new kind of MOPA configuration to obtain a high power free-electron laser with very narrow line-width that can satisfy the requirements of some applications such as the laser isotope separation has been proposed, wh...A new kind of MOPA configuration to obtain a high power free-electron laser with very narrow line-width that can satisfy the requirements of some applications such as the laser isotope separation has been proposed, which is investigated by onedimension simulations.展开更多
A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron...A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.展开更多
A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron t...A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.展开更多
The cylindrical plasma-loaded Cerenkov free-electron laser is studied by using Huid theory.It is shown that its working frequency and linear growth rate are higher th&n that of common Cerenkov free-electron laser,...The cylindrical plasma-loaded Cerenkov free-electron laser is studied by using Huid theory.It is shown that its working frequency and linear growth rate are higher th&n that of common Cerenkov free-electron laser,and for the same injection current,the linear growth rate of the system does not decrease as the gap between the dielectric Jin ear and the electron beam increases,but there is an opthiium gap value corresponding to the ma.xiniuni growth rate.展开更多
For a long pulse free-electron laser(FEL)in the low gain regime,an approximate expression is given to describe the optical field gain from the small signal to the weak saturation.The result is shown to agree with thos...For a long pulse free-electron laser(FEL)in the low gain regime,an approximate expression is given to describe the optical field gain from the small signal to the weak saturation.The result is shown to agree with those from a 1-D computer simulation.展开更多
A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carrie...A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasielectrostatic support in the superheterodyne FEL amplification section. Also, it was found that the generated pump electric field significantly influences the maintenance of parametric resonance conditions. As a result, this increases the saturation level of the slow SCW by 70%. Finally, the quasi-electrostatic support significantly reduces the maximum value of the electrostatic undulator pump field strength, which is necessary to achieve the maximum saturation level of the slow SCW.展开更多
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H...Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.展开更多
The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential so...The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.展开更多
基金the National Natural Science Foundation of China(Grant Nos.U1930116,U1832153,and 11574319)the Fund from the Center of Science and Technology of Hefei Academy of Sciences,China(Grant No.2016FXZY002)。
文摘Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.
基金Project supported by the Science Foundation of Department of Education of Sichuan Province,China (Grant No.12233454)the Youth Foundation of Department of Education of Sichuan Province,China (Grant No.10ZB080)the Xihua University Foundation,China (Grant No.Z0913306)
文摘Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.
文摘A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.
文摘A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear differential equations for electron orbits and fields of TE 11 mode in a cylindrical waveguide are solved numerically by the Runge–Kutta algorithm with averages calculated by the Gaussian quadrature technique. Self-fields and space-charge effects are neglected, and the electron beam is assumed to be cold and slippage is ignored. The parameters correspond to the Compton regime. Evolution of the radiation power and growth rate along the wiggler is studied. Ion-channel density is chosen to obtain optimum efficiency. Simulations are preformed for the FEL operating in the neighborhood of 35 GHz and 16.5 GHz for the electron beam energies of 250 keV and 400 keV, respectively. The result of the saturated efficiency was found to be in good agreement with the simple estimation based on the phase-trapping model.
文摘The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron trajectories is performed by solving the equations of motion. Our results show that the presence of a corrugated channel shifts the resonance frequency to smaller values of ion channel frequency. The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived. The dispersion relation characteristic is analyzed in detail by numerical solution. Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.
基金the Fundamental Research Funds for the Central Universities (Grant No. 10822041A2038)。
文摘The generation of hollow atoms will reduce the probability of light absorption and provide a high-quality diffraction image in the experiment. In this paper, we calculated the ionization rate of the Kr atom under x-ray free-electron laser(XFEL) using Hartree–Fock–Slater model and simulated the ionization model of Kr atom using Monte–Carlo method to determine the response of the hollow atom of Kr atom to the XFEL photon energy. Calculating the correlation between the total photoionization cross-section of the ground state of Kr atom and the photon energy, we determined three particular photon energies of 1.75 ke V, 1.90 ke V, and 14.30 ke V. The dynamics simulation under the experimental condition's17.50 ke V photon energy was achieved by implementing the Monte–Carlo method and calibrating the photon flux modeling parameters. Consequently, our calculated data are more consistent with experimental phenomena than previous theoretical studies. The saturable absorption of Kr at 1.75 ke V, 1.90 ke V, 14.30 ke V, and 17.50 ke V energies was further investigated by using the optimized photon flux model theory. We compared the statistics on main ionization paths under those four specific photon energies and calculated the population changes of various Kr hollow atoms with different configurations.The results demonstrate that the population of hollow atoms produced at the critical ionization photon energy is high. Furthermore, the change of population with respect to position is smooth, which shows a significant difference between the generation mode of ions with low and high photon energies. The result is important for the study of medium-and high-Z element hollow atoms, which has substantial implications for the study of hollow atoms with medium and high charge states, as well as for the scaling of photon energy of free electron lasers.
基金supported by the Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
文摘The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.
基金supported by the National Key Research and Development Program of China(No.2016YFA0401900)the National Natural Science Foundation of China(Nos.11475250 and11775293)+1 种基金the Young Elite Scientist Sponsorship Program of CAST(2015QNRC001)the Ten Thousand Talent Program
文摘Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.
基金Supported by the Major State Basic Research Development Program of China(2011CB808300)the National Natural Science Foundation of China(11175240,11205234 and 11322550)
文摘Coherent light with orbital angular momentum(OAM)is of great interest.Recently,OAM light generation by coupling a relativistic electron beam with a Gaussian mode laser pulse at the high harmonics of a helical undulator has been demonstrated experimentally.In this paper,the possibility of delivering coherent OAM light at the 3^(rd)harmonic of the Gaussian mode seed laser is discussed for the Shanghai deep ultraviolet freeelectron laser(SDUV-FEL).Considerations are given on the experiment setup,the expected performance and the possible measurement method.
文摘Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single electron in the combined wiggler and the periodic ionbchannel fields is solved and the classes of possible trajectories in this configuration are discussed. The gain equation for the FEL in the low-gain-per-pass lirnit is obtained by adding the effect of the periodic ion channel. Numerical calculation is employed to analyse the gain induced by the effects of the non-uniform ion density. The variation of gain with ion-channel density is demonstrated. It is shown that there is a gain enhancement for group I orbits in the presence of a non-uniform ion-channel but not in a uniform one. It is also shown that periodic ion-channel guiding is used to reach the maximum peak gain in a low ion-channel frequency (low ion density).
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
文摘A new kind of MOPA configuration to obtain a high power free-electron laser with very narrow line-width that can satisfy the requirements of some applications such as the laser isotope separation has been proposed, which is investigated by onedimension simulations.
文摘A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.
文摘A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.
文摘The cylindrical plasma-loaded Cerenkov free-electron laser is studied by using Huid theory.It is shown that its working frequency and linear growth rate are higher th&n that of common Cerenkov free-electron laser,and for the same injection current,the linear growth rate of the system does not decrease as the gap between the dielectric Jin ear and the electron beam increases,but there is an opthiium gap value corresponding to the ma.xiniuni growth rate.
文摘For a long pulse free-electron laser(FEL)in the low gain regime,an approximate expression is given to describe the optical field gain from the small signal to the weak saturation.The result is shown to agree with those from a 1-D computer simulation.
文摘A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasielectrostatic support in the superheterodyne FEL amplification section. Also, it was found that the generated pump electric field significantly influences the maintenance of parametric resonance conditions. As a result, this increases the saturation level of the slow SCW by 70%. Finally, the quasi-electrostatic support significantly reduces the maximum value of the electrostatic undulator pump field strength, which is necessary to achieve the maximum saturation level of the slow SCW.
基金supported by the National Natural Science Foundation of China(52475610)Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001).
文摘Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240613)Jiangsu Province’s“Innovation and Entrepreneurship Doctor”Program(Grant No.JSSCBS20230088)+4 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224123)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY222112)Beijing Nova Program(Grant No.20240484696)Wenzhou Major Science and Technology Innovation Key Project(Grant No.ZG2020046)INNOVATION Program for Quantum Science and Technology(Grant No.2021ZD0303200)。
文摘The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.