A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult ...A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.展开更多
A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PI...A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PIλDμ controller generally has three advantages when compared to the integerl-order controller: the first is that it has more degrees of freedom in the model; the second is that it has a memory in model,the memory insure the history and its impact to present and future,the third is it ensures the stability of missile. This approach provides a more flexible tuning strategy and therefore an easier achieving of control requirements. Flight dynamic model of an aerodynamic missile is taken into account in implementing the PIλDμ controller. Simulation results show that the PIλDμ controller is not sensitive to the changes of control parameters and the system parameters. Also,the controller has more flexible structure and stronger robustness.展开更多
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of...Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.展开更多
To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the sys...Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the system states converge to the sliding surface at a determined finite time.To eliminate the chattering in the sliding mode and make the input controller bounded,hyperbolic tangent is used for designing the proposed fractional order sliding surface.Finally,the stability of the closed loop system using this bounded sliding mode controller is guaranteed by Lyapunov theory.A comparison with the integer order case is then presented and fractional order nonlinear polynomial systems are also studied as the special case.Finally,simulation results are provided to show the effectiveness of the designed controller.展开更多
The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-fun...The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.展开更多
The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived...The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived not only for time-invariant case but also for time-varying case. Several sufficient and necessary conditions for state controllability of such systems are established and the corresponding criteria for fractional-order time-invariant continuous-time systems are also obtained. The results obtained will be help for future study of fractional-order control systems.展开更多
For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the s...For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.展开更多
针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调...针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调速系统的内模PID控制器中,得到了一种分数阶内模PI-νDa+ν控制器,该控制器包含3个可调参数。然后,通过阶跃响应分析了控制器参数对系统性能的影响,并根据分析结果设计了模糊控制器,实现了控制器参数的智能整定,克服了分数阶控制器参数整定困难的不足。实验结果表明,模糊分数阶内模PI-νDa+ν控制器可以使系统具有良好的动态响应、扰动抑制特性和克服参数摄动的鲁棒性。展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
文摘A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
文摘A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PIλDμ controller generally has three advantages when compared to the integerl-order controller: the first is that it has more degrees of freedom in the model; the second is that it has a memory in model,the memory insure the history and its impact to present and future,the third is it ensures the stability of missile. This approach provides a more flexible tuning strategy and therefore an easier achieving of control requirements. Flight dynamic model of an aerodynamic missile is taken into account in implementing the PIλDμ controller. Simulation results show that the PIλDμ controller is not sensitive to the changes of control parameters and the system parameters. Also,the controller has more flexible structure and stronger robustness.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)
基金Project(2016YFC0802904)supported by the National Key Research and Development Program of China
文摘Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
文摘Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the system states converge to the sliding surface at a determined finite time.To eliminate the chattering in the sliding mode and make the input controller bounded,hyperbolic tangent is used for designing the proposed fractional order sliding surface.Finally,the stability of the closed loop system using this bounded sliding mode controller is guaranteed by Lyapunov theory.A comparison with the integer order case is then presented and fractional order nonlinear polynomial systems are also studied as the special case.Finally,simulation results are provided to show the effectiveness of the designed controller.
文摘The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.
文摘The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived not only for time-invariant case but also for time-varying case. Several sufficient and necessary conditions for state controllability of such systems are established and the corresponding criteria for fractional-order time-invariant continuous-time systems are also obtained. The results obtained will be help for future study of fractional-order control systems.
基金supported by the National Natural Science Foundation of China(61201323)the Special Fund Project for Promoting Scientific and Technological Innovation in Xuzhou City(KC18013)the Cultivation Project of Xuzhou Institute of Technology(XKY2017112)
文摘For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.
文摘针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调速系统的内模PID控制器中,得到了一种分数阶内模PI-νDa+ν控制器,该控制器包含3个可调参数。然后,通过阶跃响应分析了控制器参数对系统性能的影响,并根据分析结果设计了模糊控制器,实现了控制器参数的智能整定,克服了分数阶控制器参数整定困难的不足。实验结果表明,模糊分数阶内模PI-νDa+ν控制器可以使系统具有良好的动态响应、扰动抑制特性和克服参数摄动的鲁棒性。
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.