Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization betw...This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization between two fractional order hyperchaotic systems under different initial conditions is realized, on the basis of the stability theorem for fractional order systems. Numerical simulations and circuitry simulations are presented to verify the analytical results.展开更多
Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The ex...Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic int...In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.展开更多
This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition ...This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition of fractional derivatives and integrals, the Lyapunov function is constructed by which it is proved that the controlled fractional order system is stable. With Laplace transform theory, the equivalent integer order state equation from the fractional order nonlinear system is obtained, and the system output can be solved. The simulation results validate the effectiveness of the theory.展开更多
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm...We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for t...This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.展开更多
A fractional-order difference equation model of a third-order discrete phase-locked loop(FODPLL) is discussed and the dynamical behavior of the model is demonstrated using bifurcation plots and a basin of attraction. ...A fractional-order difference equation model of a third-order discrete phase-locked loop(FODPLL) is discussed and the dynamical behavior of the model is demonstrated using bifurcation plots and a basin of attraction. We show a narrow region of loop gain where the FODPLL exhibits quasi-periodic oscillations, which were not identified in the integer-order model. We propose a simple impulse control algorithm to suppress chaos and discuss the effect of the control step. A network of FODPLL oscillators is constructed and investigated for synchronization behavior. We show the existence of chimera states while transiting from an asynchronous to a synchronous state. The same impulse control method is applied to a lattice array of FODPLL, and the chimera states are then synchronized using the impulse control algorithm. We show that the lower control steps can achieve better control over the higher control steps.展开更多
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a...In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractiona...This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T...Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.展开更多
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp...Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.展开更多
The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural n...The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.展开更多
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilitie...In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.展开更多
The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractiona...The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First,we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua's circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua's circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other.展开更多
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed co...We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
文摘This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization between two fractional order hyperchaotic systems under different initial conditions is realized, on the basis of the stability theorem for fractional order systems. Numerical simulations and circuitry simulations are presented to verify the analytical results.
基金supported by the Science and Technology Planning Project(2014JQ1041)of Shaanxi Provincethe Scientic Research Program Funded by Shaanxi Provincial Education Department(14JK1300)+1 种基金the Research Fund for the Doctoral Program(BS1342)of Xi’an Polytechnic Universitysupported by Ministerio de Economíay Competitividad and EC fund FEDER,Project no.MTM2010-15314,Spain
文摘Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
文摘In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)Natural Science Foundation of Zhejiang Province (Grant No. Y107440)
文摘This paper studies the stability of the fractional order unified chaotic system. On the unstable equilibrium points, the equivalent passivity'' method is used to design the nonlinear controller. With the definition of fractional derivatives and integrals, the Lyapunov function is constructed by which it is proved that the controlled fractional order system is stable. With Laplace transform theory, the equivalent integer order state equation from the fractional order nonlinear system is obtained, and the system output can be solved. The simulation results validate the effectiveness of the theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
文摘We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60702023)the Key Scientific and Technological Project of Zhejiang Province of China (Grant No. 2007C11094)
文摘This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.
基金Project supported by the Center for Nonlinear Systems,Chennai Institute of Technology,India (Grant No. CIT/CNS/2020/RD/061)。
文摘A fractional-order difference equation model of a third-order discrete phase-locked loop(FODPLL) is discussed and the dynamical behavior of the model is demonstrated using bifurcation plots and a basin of attraction. We show a narrow region of loop gain where the FODPLL exhibits quasi-periodic oscillations, which were not identified in the integer-order model. We propose a simple impulse control algorithm to suppress chaos and discuss the effect of the control step. A network of FODPLL oscillators is constructed and investigated for synchronization behavior. We show the existence of chimera states while transiting from an asynchronous to a synchronous state. The same impulse control method is applied to a lattice array of FODPLL, and the chimera states are then synchronized using the impulse control algorithm. We show that the lower control steps can achieve better control over the higher control steps.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023,60871025,and 10862001)the Natural Science Foundation of Guangdong Province,China (Grant Nos. S2011010001018 and 8151009001000060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003)
文摘In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.51207173 and 51277192)
文摘This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant No.51507134)the Science Fund from the Education Department of Shaanxi Province,China(Grant No.15JK1537)
文摘Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)the Natural Science Foundation of Zhejiang Province, China (Grant No. R1110443)
文摘Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371049 and 61772063)the Fundamental Research Funds for the Central Universities,China(Grant No.2016JBM070)
文摘The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 11202155)the Fundamental Research Funds for the Central Universities, China (Grant No. K50511700001)
文摘In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
基金supported by the National Natural Science Foundation of China(Grant Nos.51109180 and 51479173)the Fundamental Research Funds for the Central Universities,China(Grant No.201304030577)+1 种基金the Northwest A&F University Foundation,China(Grant No.2013BSJJ095)the Scientific Research Foundation on Water Engineering of Shaanxi Province,China(Grant No.2013slkj-12)
文摘The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them.Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First,we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua's circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua's circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238)the Ministry of Education Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRTO0742)
文摘We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.