期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Identification of Plant-Pathogenic Fungi Using Fourier Transform Infrared Spectroscopy Combined with Chemometric Analyses
1
作者 CHAI A-li WANG Yi-kai +3 位作者 ZHU Fa-di SHI Yan-xia XIE Xue-wen LI Bao-ju 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第11期3764-3771,共8页
Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investig... Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification. 展开更多
关键词 fourier transform infrared spectroscopy(FTIR) Plant-pathogenic fungi IDENTIFICATION Cluster analysis Canonical vitiate analysis
在线阅读 下载PDF
Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications 被引量:1
2
作者 HE Zhongqi LIU Yongliang +2 位作者 KIM Hee Jin TEWOLDE Haile ZHANG Hailin 《Journal of Cotton Research》 2022年第2期130-142,共13页
Background:The majority of attenuated total reflection Fourier transform infrared(ATR FT-IR)investigations of cotton are focused on the fiber tissue for biological mechanisms and understanding of fiber development and... Background:The majority of attenuated total reflection Fourier transform infrared(ATR FT-IR)investigations of cotton are focused on the fiber tissue for biological mechanisms and understanding of fiber development and maturity,but rarely on other cotton biomass comp on ents.This work examined in detail the ATR FT-IR spectral features of various cott on tissues/organs at reproductive and maturation stages,an a lyzed and discussed their biological implications.Results:The ATR FT-IR spectra of these tissues/organs were an a lyzed and compared with the focus on the lower wavenumber fingerprinting range.Six outstanding FT-IR bands at 1730,1620,1525,1235,1050 and 895 cm^(-1) represented the major C=O stretching,protein Amide I,Amide II,the O-H/N-H deformation,the total C-O-C stretching and the β-glycosidic linkage in celluloses,respectively,and impacted differently between these organs with the two growth stages.Furthermore,the band intensity at 1620,1525,1235,and 1050 cm^(-1) were exclusively and significantly correlated to the levels of protein(Amide I bond),protein(Amide II bond),cellulose,and hemicellulose,respectively,whereas the band at 1730 cm^(-1) was negatively correlated with ash content.Conclusions:The resulting observations indicated the capability of ATR FT-IR spectroscopy for monitoring changes,transportation,and accumulation of the major chemical components in these tissues over the cotton growth period.In other words,this spectral technology could be an effective tool for physiological,biochemical,and morphological research related to cotton biology and development. 展开更多
关键词 COTTON fourier transform infrared spectroscopy FIBER CELLULOSE PROTEIN Plant tissue
在线阅读 下载PDF
Microstructure and microwave dielectric properties of CaO-B_2O_3-SiO_2 glass ceramics with various B_2O_3 contents 被引量:9
3
作者 韦鹏飞 周洪庆 +2 位作者 朱海奎 戴斌 王杰 《Journal of Central South University》 SCIE EI CAS 2011年第5期1359-1364,共6页
The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diff... The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of B203 causes the increase of the contents of [BO3], [BO4] and [SiO4], which deduces the increase of CaB204 and a-SiO2 and the decrease of CaSiO3 correspondingly. No new phase is observed throughout the entire experiments. A bulk density of 2.54 g/cm3, a thermal expansion coefficient value of 11.95× 10-6 ℃-1 (20-500℃), a dielectric constant er value of 6.42 and a dielectric loss tanδ value of 0.000 9 (measured at 9.7 GHz) are obtained for CBS glass ceramics containing 35%-B203 (mass fraction) sintered at 850 ℃ for 15 min. 展开更多
关键词 CAO-B2O3-SIO2 B2O3 content fourier transform infrared spectroscopy MICROSTRUCTURE dielectric properties
在线阅读 下载PDF
Adsorption of NO and NH_3 over CuO/γ-Al_2O_3 catalyst 被引量:2
4
作者 赵清森 孙路石 +3 位作者 刘勇 苏胜 向军 胡松 《Journal of Central South University》 SCIE EI CAS 2011年第6期1883-1890,共8页
The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al... The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed. 展开更多
关键词 CUO/Γ-AL2O3 NH3 NO ADSORPTION diffusion reflectance infrared fourier transform spectroscopy density functionaltheory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部