Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
The Upper Cretaceous of Tantou Basin in western Henan has yielded many vertebrate fossils,which are featured by several non-avian dinosaurs.Meanwhile,studies on their eggs were yet inadequate though many eggshells hav...The Upper Cretaceous of Tantou Basin in western Henan has yielded many vertebrate fossils,which are featured by several non-avian dinosaurs.Meanwhile,studies on their eggs were yet inadequate though many eggshells have been reported.The newly discovered material 41HⅤ0199 was excavated from the Upper Cretaceous Qiupa Formation in 2021.The block preserves eight complete eggs arranged in two partial rings that form a partial clutch,and there are some scattered eggshells preserved closely with the block,showing a concave-up to concave-down ratio of 54.5:45.5,which indicates that the scattered eggshells come from the clutch and the clutch had been partially broken before it was buried.Based on morphological and microstructural characteristics,the eggs and eggshells can be assigned to Macroolithus yaotunensis(Elongatoolithidae),an oospecies known to be related to oviraptorids,which leads Yulong mini to be its probable producer.Besides,some eggshells show microstructural signs indicating egg retention,which marks the second example of egg retention in the oofamily Elongatoolithidae.展开更多
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o...Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy...In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.展开更多
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus ...Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus gen.et sp.nov.,from the Jiucaiyuan Formation,Xinjiang,China.The new taxon is represented by a partial snout with occluded partial lower jaw and two postcranial skeletons.Although juvenile in stage,the new species is diagnosed by the following features:round pit in middle of lateral surface of maxilla;lacrimal contact nasal;fossa for dentary tooth on the posterior end of the premaxilla,lateral to the anterior choana;two small vertical triangular ridges extending dorsally and ventrally on the vomerine anterior portion,and bordering a thin vomerine foramen laterally;anterior projection of the lateral part of the frontal on the nasal;symphyseal region of the dentary projected anteriorly;5 upper premaxillary teeth,upper and lower canines absent,diastema between the last premaxillary upper incisor and first maxillary tooth present,no diastema separating anterior from posterior dentition in the mandible,10 maxillary teeth and 12 dentary teeth,posterior postcanine expands mesiodistally,having a main large cusps and tiny anterior and posterior accessory cusps in line;neural arches of the atlas fused by the neural spine,neural spine of the axis projected posteriorly,procoracoid foramen lies between procoracoid and scapula.Features of the dentition resembles those of the small baurioid Ericiolacerta parva from South Africa and Silphedosuchus orenburgensis from Russia.The specimens provide the rare opportunity to know in detail the postcranial skeleton of baurioids.展开更多
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm i...To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm is introduced.Firstly,a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration,as well as the formation forming time,which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically.Next,considering the constraints caused by formation controller on trajectory planning such as the safe distance,turn angle and step length,as well as the constraint of formation shape,a leader trajectory planning method based on sparse A^(*)algorithm is proposed.Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.展开更多
The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and t...The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and the position,velocity,and attitude information of other UAVs in the azimuth area.This resolves problems wherein nodes are necessarily strongly connected and communication is strictly consistent under the traditional distributed formation control method.An adaptive distributed formation flight strategy is established for multiple UAVs by exploiting proximity behavior observations,which remedies the poor flexibility in distributed formation.This technique ensures consistent position and attitude among UAVs.In the proposed method,the azimuth area relative to the UAV itself is established to capture the state information of proximal UAVs.The dependency degree factor is introduced to state update equation based on proximity behavior.Finally,the formation position,speed,and attitude errors are used to form an adaptive dynamic adjustment strategy.Simulations are conducted to demonstrate the effectiveness and robustness of the theoretical results,thus validating the effectiveness of the proposed method.展开更多
Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which...Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.展开更多
The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems m...The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.展开更多
The formation of the Tibetan Plateau is closely related to the evolution of Tethys. There have been many researchers and articles concerning the Tethys since E.Suess proposed the concept in 1893. It means a large ocea...The formation of the Tibetan Plateau is closely related to the evolution of Tethys. There have been many researchers and articles concerning the Tethys since E.Suess proposed the concept in 1893. It means a large ocean which lies between Eurasia and Gondwanaland. With the development of Tethyan research, some new terms, appeared such as Neo\|Tethys, Paleo\|Tethys, and Proto\|Tethys, representing the Tethys in Mesozoic—Cenozoic, late Paleozoic and early Paleozoic respectively. The trace of an ocean from Sinian to Ordovician was discovered during the scientific expedition and Proto\|Tethys was proposed to name the ocean. Therefore, the Tibetan Plateau is the main scope of the Eastern Tethys. It can be divided c losely related into three zones which represent the main oceanic locations in th ree different stages.The Northern Tethyan Region lies in the Kunlun and Qilian Mountains, its remnant is the Fifth Suture Zone. It is also the northern boundary of the Tibetan Plateau The rift initiated after the continental basement had been formed in Sinian and gradually developed into an ocean, which was named Proto\|Tethys, the earliest Tethyan ocean known up to now. The petrochemical compositions of pillow lava in this zone show the characteristics of mid\|ocean ridge tholeiite basalt and the pelagic ophiolitic flysch were well developed, indicating a matured ocean. It was closed in Ordovician and Silurian.展开更多
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ...Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term ...Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.展开更多
This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant forma...This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding nu...To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding numerical investigation is focused on,in which the fluid-structure interaction(FSI)method and the experimental verification are used.Based on the obtained quantitative relations between the forming performance and a(the ratio of height to maximum radius of ES),an optimal design is further provided.The results indicate that:when the embedded structural length and width range 0.1e0.3D and 0.1e0.2D(D:diameter of EFP warhead)at a fixed volume,respectively,EFP forming velocity nearly keeps as a constant,1760 m/s;the height of ES has a dramatical effect on the propagating range of detonation wave,resulting in significant influence on the aerodynamic shape and length-to-diameter ratio of EFP;under the given constraints,the EFP length-diameter ratio can reach the optimal value2.76,when the height of ES is 0.22D.展开更多
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin...The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.展开更多
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul...The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.展开更多
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
文摘The Upper Cretaceous of Tantou Basin in western Henan has yielded many vertebrate fossils,which are featured by several non-avian dinosaurs.Meanwhile,studies on their eggs were yet inadequate though many eggshells have been reported.The newly discovered material 41HⅤ0199 was excavated from the Upper Cretaceous Qiupa Formation in 2021.The block preserves eight complete eggs arranged in two partial rings that form a partial clutch,and there are some scattered eggshells preserved closely with the block,showing a concave-up to concave-down ratio of 54.5:45.5,which indicates that the scattered eggshells come from the clutch and the clutch had been partially broken before it was buried.Based on morphological and microstructural characteristics,the eggs and eggshells can be assigned to Macroolithus yaotunensis(Elongatoolithidae),an oospecies known to be related to oviraptorids,which leads Yulong mini to be its probable producer.Besides,some eggshells show microstructural signs indicating egg retention,which marks the second example of egg retention in the oofamily Elongatoolithidae.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3302501)the National Natural Science Foundation of China(Grant Nos.12102077,12161076,U2241263).
文摘Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
文摘In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
文摘Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus gen.et sp.nov.,from the Jiucaiyuan Formation,Xinjiang,China.The new taxon is represented by a partial snout with occluded partial lower jaw and two postcranial skeletons.Although juvenile in stage,the new species is diagnosed by the following features:round pit in middle of lateral surface of maxilla;lacrimal contact nasal;fossa for dentary tooth on the posterior end of the premaxilla,lateral to the anterior choana;two small vertical triangular ridges extending dorsally and ventrally on the vomerine anterior portion,and bordering a thin vomerine foramen laterally;anterior projection of the lateral part of the frontal on the nasal;symphyseal region of the dentary projected anteriorly;5 upper premaxillary teeth,upper and lower canines absent,diastema between the last premaxillary upper incisor and first maxillary tooth present,no diastema separating anterior from posterior dentition in the mandible,10 maxillary teeth and 12 dentary teeth,posterior postcanine expands mesiodistally,having a main large cusps and tiny anterior and posterior accessory cusps in line;neural arches of the atlas fused by the neural spine,neural spine of the axis projected posteriorly,procoracoid foramen lies between procoracoid and scapula.Features of the dentition resembles those of the small baurioid Ericiolacerta parva from South Africa and Silphedosuchus orenburgensis from Russia.The specimens provide the rare opportunity to know in detail the postcranial skeleton of baurioids.
基金supported by the National Natural Science Foundation of China(11502019).
文摘To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm is introduced.Firstly,a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration,as well as the formation forming time,which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically.Next,considering the constraints caused by formation controller on trajectory planning such as the safe distance,turn angle and step length,as well as the constraint of formation shape,a leader trajectory planning method based on sparse A^(*)algorithm is proposed.Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.
文摘The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and the position,velocity,and attitude information of other UAVs in the azimuth area.This resolves problems wherein nodes are necessarily strongly connected and communication is strictly consistent under the traditional distributed formation control method.An adaptive distributed formation flight strategy is established for multiple UAVs by exploiting proximity behavior observations,which remedies the poor flexibility in distributed formation.This technique ensures consistent position and attitude among UAVs.In the proposed method,the azimuth area relative to the UAV itself is established to capture the state information of proximal UAVs.The dependency degree factor is introduced to state update equation based on proximity behavior.Finally,the formation position,speed,and attitude errors are used to form an adaptive dynamic adjustment strategy.Simulations are conducted to demonstrate the effectiveness and robustness of the theoretical results,thus validating the effectiveness of the proposed method.
基金Project(NS2013091)supported by the Basis Research Fund of Nanjing University of Aeronautics and Astronautics,China
文摘Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.
基金Project (2011ZX05007-004) supported by the National Sciences and Technologies,ChinaProject (41502132) supported by the National Natural Science Foundation of China
文摘The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.
文摘The formation of the Tibetan Plateau is closely related to the evolution of Tethys. There have been many researchers and articles concerning the Tethys since E.Suess proposed the concept in 1893. It means a large ocean which lies between Eurasia and Gondwanaland. With the development of Tethyan research, some new terms, appeared such as Neo\|Tethys, Paleo\|Tethys, and Proto\|Tethys, representing the Tethys in Mesozoic—Cenozoic, late Paleozoic and early Paleozoic respectively. The trace of an ocean from Sinian to Ordovician was discovered during the scientific expedition and Proto\|Tethys was proposed to name the ocean. Therefore, the Tibetan Plateau is the main scope of the Eastern Tethys. It can be divided c losely related into three zones which represent the main oceanic locations in th ree different stages.The Northern Tethyan Region lies in the Kunlun and Qilian Mountains, its remnant is the Fifth Suture Zone. It is also the northern boundary of the Tibetan Plateau The rift initiated after the continental basement had been formed in Sinian and gradually developed into an ocean, which was named Proto\|Tethys, the earliest Tethyan ocean known up to now. The petrochemical compositions of pillow lava in this zone show the characteristics of mid\|ocean ridge tholeiite basalt and the pelagic ophiolitic flysch were well developed, indicating a matured ocean. It was closed in Ordovician and Silurian.
基金Project(42177143) supported by the National Natural Science Foundation of ChinaProject(2020JDJQ0011) supported by the Science Foundation for Distinguished Young Scholars of Sichuan Province,China。
文摘Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金Project(41802147)supported by the National Natural Science Foundation of ChinaProject(2016ZX05007-004)supported by the National Major Science and Technology Projects of China。
文摘Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.
基金supported by the Natural Science Foundation of China(61101004 61803014)
文摘This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金funded by the National Natural Science Foundation of China under No. 11102088Fundamental Research Funds for the Central Universities under No. 30915118821funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China under No. 20133219110019
文摘To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding numerical investigation is focused on,in which the fluid-structure interaction(FSI)method and the experimental verification are used.Based on the obtained quantitative relations between the forming performance and a(the ratio of height to maximum radius of ES),an optimal design is further provided.The results indicate that:when the embedded structural length and width range 0.1e0.3D and 0.1e0.2D(D:diameter of EFP warhead)at a fixed volume,respectively,EFP forming velocity nearly keeps as a constant,1760 m/s;the height of ES has a dramatical effect on the propagating range of detonation wave,resulting in significant influence on the aerodynamic shape and length-to-diameter ratio of EFP;under the given constraints,the EFP length-diameter ratio can reach the optimal value2.76,when the height of ES is 0.22D.
基金supported by the National Natural Science Foundation of China(61573017 61703425)the Aeronautical Science Fund(20175796014)
文摘The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.
基金supported by the National Natural Science Foundation of China (No. 12172052)the China Postdoctoral Science Foundation (No. 3020036722021)
文摘The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.