One of the more challenging and unresolved issues in ATM networks is the congestion control of available bit rate (ABR). The dynamic controller is designed based on the control theory and the feedback mechanism of e...One of the more challenging and unresolved issues in ATM networks is the congestion control of available bit rate (ABR). The dynamic controller is designed based on the control theory and the feedback mechanism of explicit rates With the given method of a chosen parameter, it can guarantee the stability of the controller and closed loop system with propagation delay and bandwidth oscillation. It needs less parameters(only one) to be designed. The queue length can converge to the given value in the least steps. The fairness of different connections is considered further. The simulations show better performance and good quality of service(QoS) is achieved.展开更多
This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving pr...This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving process with different rates. The channel holding times of the two types of calls follow different phase-type distributions. Firstly, the joint distribution of two queue lengths is derived, and then the dropping and blocking probabilities, the mean queue length and the mean waiting time from the joint distribution are gotten. Finally, numerical examples show the impact of different call arrival rates on the performance measures.展开更多
Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower pri...Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.展开更多
Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfair...Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.展开更多
人类驾驶的不可控性使得间歇优先公交专用道(Bus Lanes with Intermittent Priority,BLIP)不能被有效利用。为解决该问题,本文提出智能网联车辆(Connected and Automated Vehicles,CAV)复用BLIP的控制方法。CAV借道控制考虑了公交车间...人类驾驶的不可控性使得间歇优先公交专用道(Bus Lanes with Intermittent Priority,BLIP)不能被有效利用。为解决该问题,本文提出智能网联车辆(Connected and Automated Vehicles,CAV)复用BLIP的控制方法。CAV借道控制考虑了公交车间移动区间的约束,还道控制考虑了与旁道CAV队列的协同,以应对还道安全距离不足的情况。并利用开放边界元胞自动机模型对提出的方法进行仿真。结果表明:同等流量下,CAV复用BLIP可大幅提高道路通行效率,且中等CAV渗透率下最显著,道路平均速度从6.67 km·h^(-1)提高至30.53 km·h^(-1);无论CAV渗透率高低,CAV队列协同换道都比单个CAV协同换道更有助于提高道路通行效率,相较之下将道路平均速度提高8%~19%。展开更多
为解决命名数据网(Named Data Networking,NDN)中混合拥塞控制的过度控制问题,提出一种协同拥塞控制方案CHCC(Cooperative Hybrid Congestion Control),不仅支持接收端和路由器协同缓解拥塞,还能够防止由于两者过度控制导致的传输性能...为解决命名数据网(Named Data Networking,NDN)中混合拥塞控制的过度控制问题,提出一种协同拥塞控制方案CHCC(Cooperative Hybrid Congestion Control),不仅支持接收端和路由器协同缓解拥塞,还能够防止由于两者过度控制导致的传输性能下降。CHCC通过主动队列管理技术检测拥塞并产生标记信息,触发下游接收端调整Interest发送窗口、路由器转移流量来控制拥塞。在ndnSIM中实现该方案,并与ICP(Interest Control Protocol)方案进行对比,结果表明CHCC在多种拓扑下均能获得更高的吞吐量,更低、更稳定的传输延时,同时无丢包现象,此外,通过Jain's公平性指数进行公平评价,结果表明CHCC在确保用户间资源分配公平方面同样非常有效。展开更多
基金This project was supported partly by the Outstanding Youth Scientific Foundation of China(60525303)the National Natural Science Foundation of China(60404022, 60604012)the Natural Science Foundation of Hebei Province of China(F2005000390).
文摘One of the more challenging and unresolved issues in ATM networks is the congestion control of available bit rate (ABR). The dynamic controller is designed based on the control theory and the feedback mechanism of explicit rates With the given method of a chosen parameter, it can guarantee the stability of the controller and closed loop system with propagation delay and bandwidth oscillation. It needs less parameters(only one) to be designed. The queue length can converge to the given value in the least steps. The fairness of different connections is considered further. The simulations show better performance and good quality of service(QoS) is achieved.
基金supported by the Postgraduate Innovation Project of Jiangsu University (CX10B 003X)
文摘This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving process with different rates. The channel holding times of the two types of calls follow different phase-type distributions. Firstly, the joint distribution of two queue lengths is derived, and then the dropping and blocking probabilities, the mean queue length and the mean waiting time from the joint distribution are gotten. Finally, numerical examples show the impact of different call arrival rates on the performance measures.
基金supported by the National Natural Science Foundation of China (50421703)the National Key Laboratory of Electrical Engineering of Naval Engineering University
文摘Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.
基金Projects(61163060,61103204,60963022) supported by the National Natural Science Foundation of ChinaProject(D018023) supported by the Natural Science Foundation of Guangxi Province,ChinaPostdoctoral Funding of Central South University,China
文摘Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.
基金Supported by National Natural Science Foundation of China (60974129, 70931002), Natural Science Foundation of Jiangsu Province (BK2008188, BK2009388), and Science Foundation of Nanjing University of Science and Technology (AB41972)
文摘人类驾驶的不可控性使得间歇优先公交专用道(Bus Lanes with Intermittent Priority,BLIP)不能被有效利用。为解决该问题,本文提出智能网联车辆(Connected and Automated Vehicles,CAV)复用BLIP的控制方法。CAV借道控制考虑了公交车间移动区间的约束,还道控制考虑了与旁道CAV队列的协同,以应对还道安全距离不足的情况。并利用开放边界元胞自动机模型对提出的方法进行仿真。结果表明:同等流量下,CAV复用BLIP可大幅提高道路通行效率,且中等CAV渗透率下最显著,道路平均速度从6.67 km·h^(-1)提高至30.53 km·h^(-1);无论CAV渗透率高低,CAV队列协同换道都比单个CAV协同换道更有助于提高道路通行效率,相较之下将道路平均速度提高8%~19%。
文摘为解决命名数据网(Named Data Networking,NDN)中混合拥塞控制的过度控制问题,提出一种协同拥塞控制方案CHCC(Cooperative Hybrid Congestion Control),不仅支持接收端和路由器协同缓解拥塞,还能够防止由于两者过度控制导致的传输性能下降。CHCC通过主动队列管理技术检测拥塞并产生标记信息,触发下游接收端调整Interest发送窗口、路由器转移流量来控制拥塞。在ndnSIM中实现该方案,并与ICP(Interest Control Protocol)方案进行对比,结果表明CHCC在多种拓扑下均能获得更高的吞吐量,更低、更稳定的传输延时,同时无丢包现象,此外,通过Jain's公平性指数进行公平评价,结果表明CHCC在确保用户间资源分配公平方面同样非常有效。