期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Artificial Neural Network for Combining Forecasts
1
作者 Shanming Shi, Li D. Xu & Bao Liu(Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA)(Department of MSIS, Wright State University, Dayton, OH 45435,USA)(Institute of Systems Engineering, Tianjin University, Tianjin 30 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期58-64,共7页
This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods a... This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy. 展开更多
关键词 Artificial neural network Forecasting Combined forecasts Nonlinear systems.
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
3
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON Machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
4
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
A Study on Reconstruction of Surface Wind Speed in China Due to Various Climate Variabilities
5
作者 Li Yancong Li Xichen +1 位作者 Sun Yankun Xu Jinhua 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期53-65,共13页
Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ... Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions. 展开更多
关键词 wind speed wind energy correlation method climate variability European Centre for Medium-Range Weather forecasts Reanalysis V5(ERA5)
在线阅读 下载PDF
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
6
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
在线阅读 下载PDF
WRF、EC和T639模式在福建沿海冬半年大风预报中的检验与应用 被引量:19
7
作者 曾瑾瑜 韩美 +2 位作者 吴幸毓 林青 廖廓 《海洋科学》 CAS CSCD 北大核心 2015年第7期75-85,共11页
基于福建省冬半年沿海和港湾岛屿自动站的逐时极大风观测资料和WRF(Weather Research and Forecast)、EC(European Centre for Medium-Range Weather Forecasts)细网格以及T639(TL639L60)三种模式预报的10 m风场资料,将模式预报... 基于福建省冬半年沿海和港湾岛屿自动站的逐时极大风观测资料和WRF(Weather Research and Forecast)、EC(European Centre for Medium-Range Weather Forecasts)细网格以及T639(TL639L60)三种模式预报的10 m风场资料,将模式预报的风向风速与观测资料进行对比检验,结果表明:福建省沿海冬半年大风的盛行风向以东北风为主,大风的时空分布极为不均,沿海风力的脉动性、跳跃性、局地性突出。从三种模式对风速风向的模拟效果来看, WRF和EC细网格的预报效果较好,有可参考性, T639可参考性不高。对于风速,模式预报结果相比实况极大风速偏小,港湾岛屿代表站风速的平均绝对误差均小于沿海代表站,预报平均误差由沿海向内陆逐渐减小,由中部向南北逐渐减小。风向相比风速的预报效果要差, WRF和EC细网格的风向预报误差在45°-50°,有一定的参考意义;港湾岛屿代表站风向的平均绝对误差大于沿海代表站,以浮标站的误差最大。当观测风速出现7级及以上风速时,若对大风进行分级检验,则较低风速的预报平均绝对误差小于较高风速;风向预报的平均绝对误差也大大降低,且误差都在45°以内,具有良好的参考性。 展开更多
关键词 WRF(Weather Research and Forecast) EC(European Centre for Medium-Range WEATHER forecasts)细网格 T639(TL639L60) 大风检验 冬半年 福建沿海
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
8
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
Networking Observation and Applications of Chinese Ocean Satellites
9
作者 ZOU Bin LIU Yuxin 《空间科学学报》 CAS CSCD 北大核心 2024年第4期722-730,共9页
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la... This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development. 展开更多
关键词 Chinese ocean satellites Networking observation Ocean forecasting Ocean disaster prevention and mitigation Ocean ecological monitoring Ocean resource development Polar monitoring Terrestrial applications
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
10
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
人工林碳汇潜力新概念及应用 被引量:55
11
作者 魏晓华 郑吉 +4 位作者 刘国华 刘世荣 王伟峰 刘苑秋 Blanco A.Juan 《生态学报》 CAS CSCD 北大核心 2015年第12期3881-3885,共5页
定量确定森林碳汇潜力有助于科学地评估森林对碳汇的潜在贡献及制定实现这种潜力所需要的经营管理措施。目前,国内外有关森林碳汇潜力缺乏统一的概念及计量方法。在综述国内外有关固碳潜力概念的基础上,引入时间动态构架和可持续性的概... 定量确定森林碳汇潜力有助于科学地评估森林对碳汇的潜在贡献及制定实现这种潜力所需要的经营管理措施。目前,国内外有关森林碳汇潜力缺乏统一的概念及计量方法。在综述国内外有关固碳潜力概念的基础上,引入时间动态构架和可持续性的概念,提出了针对人工林的固碳潜力概念并利用FORECAST模型以杉木人工林为例阐明此概念的实际意义与应用。 展开更多
关键词 人工林 固碳潜力 可持续森林经营 碳密度 FORECAST模型
在线阅读 下载PDF
模拟楠木杉木人工混交林不同混交比例对净生产力和碳储量的影响 被引量:26
12
作者 田晓 刘苑秋 +4 位作者 魏晓华 张桧 王伟峰 郑吉 胡靖宇 《江西农业大学学报》 CAS CSCD 北大核心 2014年第1期122-130,共9页
以中亚热带楠木杉木混交林为研究对象,应用加拿大森林生态学家J.P.(Hamish)Kimmins教授主持开发的混合型模型FORECAST,模拟不同立地质量、不同混交比例下(楠木纯林、楠木杉木混交比为5∶1、4∶1、3∶1、1∶1、1∶3以及杉木纯林)林分在未... 以中亚热带楠木杉木混交林为研究对象,应用加拿大森林生态学家J.P.(Hamish)Kimmins教授主持开发的混合型模型FORECAST,模拟不同立地质量、不同混交比例下(楠木纯林、楠木杉木混交比为5∶1、4∶1、3∶1、1∶1、1∶3以及杉木纯林)林分在未来300年内净生产力和碳储量的时空变化。模拟结果显示:楠木杉木混交比为3∶1所获得的净生产力要高于其他混交比例,也明显高于杉木纯林,在较好立地、中等立地下分别达15.24 t/(hm2·a)和13.28 t/(hm2·a)。楠木×杉木混交比例3∶1的树干碳储量和乔木碳储量的累积将达到最大。楠木纯林以及楠木与杉木混交比例大于1的混交林的土壤碳储量在300年的模拟时间内呈现上升趋势;杉木纯林以及楠木与杉木比小于1的混交林的土壤碳储量在300年的模拟时间内则呈现下降趋势,且混交林中随着楠木比例的减少土壤退化趋势越严重。较好立地的净生产力和碳储量要优于较差立地,且楠木杉木混交比例为3∶1时净生产力和固碳能力最强,由此可见,无论是从获得最大干材量的经济角度还是从维持森林生产力角度来讲,楠木杉木混交比例3∶1最优。 展开更多
关键词 FORECAST模型 楠木 混交比例 净生产力 碳储量
在线阅读 下载PDF
模拟不同初植密度杉木楠木混交林对碳储量的影响 被引量:8
13
作者 田晓 胡靖宇 +3 位作者 刘静波 王丽娟 朱琳 刘苑秋 《西南农业学报》 CSCD 北大核心 2018年第3期598-604,共7页
【目的】探索楠木×杉木混交林可持续性经营策略,并且为我国森林碳汇的估算提供参考和依据。【方法】以中亚热带楠木×杉木混交林为研究对象,采用标准地调查法获取相应数据,应用FORECAST混合型模型,模拟不同立地条件和初植密度... 【目的】探索楠木×杉木混交林可持续性经营策略,并且为我国森林碳汇的估算提供参考和依据。【方法】以中亚热带楠木×杉木混交林为研究对象,采用标准地调查法获取相应数据,应用FORECAST混合型模型,模拟不同立地条件和初植密度下(4000,3000,2500,2000,1600株/hm^2)楠木×杉木混交林在未来300年(6个轮伐期)碳储量的时空变化。【结果】在300年的模拟时间里,不同初植密度多代连栽的楠木×杉木混交林在好、中、差3种立地条件下,碳储总量、土壤碳储量、生态系统碳储量以及年均固碳量都有较大的差异,表现为较好立地条件>中等立地条件>较差立地条件。并且楠木×杉木混交林随着连栽次数的增加碳储总量、土壤碳储量、生态系统碳储量以及净生产力都呈现上升趋势。【结论】在较好立地条件下,初植密度为2500株/hm^2的楠木杉木人工混交林在300年间所积累的碳储量及年均净生产力最高。中等立地条件下楠木×杉木混交林的初植密度控制在2500~3000株/hm^2,能够获得最大碳储量;在较差立地条件下,初植密度为4000株/hm^2的林分在300年间所积累的碳储量最高。 展开更多
关键词 FORECAST模型 杉木 楠木 初植密度 碳储量
在线阅读 下载PDF
城市化对北京单次极端高温过程影响的数值模拟研究 被引量:6
14
作者 张雷 任国玉 +5 位作者 苗世光 张爱英 孟凡超 朱士超 任玉玉 索南看卓 《大气科学》 CSCD 北大核心 2020年第5期1093-1108,共16页
城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式... 城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式,能够模拟出北京连续5日高温的特征和城市热岛强度的变化。城市下垫面的不透水性决定了城区2 m高度处相对湿度低于乡村,削弱了城区通过潜热调节城市气温的能力。日落后,城市感热通量下降缓慢,城区降温速率小于乡村,夜间边界层稳定、高度低,风速小,抑制了城乡之间能量的传输,形成了夜间强的城市热岛强度,造成夜间城市气温明显高于乡村。日出后城乡地面感热通量、潜热通量迅速上升,边界层稳定性下降。午后,城市下垫面分别为地表感热通量和潜热通量的高、低值中心,通过潜热调节气温的能力被削弱;边界层稳定性降低,有利于能量的垂直扩散;此时,城市热岛强度小于夜间。因此,北京城市下垫面形成了明显的城市热岛效应,加重了城区极端高温事件的强度。此外,在这次高温热浪期间,中国东部大部分地区受到大陆暖高压控制,晴空少云,西北气流越山后形成焚风效应,是北京地区高温热浪形成的天气背景。 展开更多
关键词 极端高温 城市热岛 数值模拟 WRF(Weather Research and Forecasting) 北京
在线阅读 下载PDF
城市化对2008年8月25日上海一次特大暴雨的影响 被引量:21
15
作者 吴风波 汤剑平 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期71-81,共11页
本文利用新一代中尺度数值天气模式Weather Research and Forecasting Model(v3.1.1,WRFV3)、日本气象厅20 km分析资料及自动站观测数据等模拟了2008年8月25日上海一次特大暴雨过程,并研究了城市化对这次暴雨过程的影响.研究结果表明:WR... 本文利用新一代中尺度数值天气模式Weather Research and Forecasting Model(v3.1.1,WRFV3)、日本气象厅20 km分析资料及自动站观测数据等模拟了2008年8月25日上海一次特大暴雨过程,并研究了城市化对这次暴雨过程的影响.研究结果表明:WRFV3模式能够较好地模拟出上海0825暴雨的主要分布特征,强降水中心以及暴雨随时间变化趋势;上海城市化使得这次暴雨过程在城市中心区域和迎风区降雨增强,城市背风区降雨减少;而城市化引起的陆面粗糙度等变化的动力作用对城市地区低层风场产生阻挡,使得城市迎风区垂直上升运动增强、水汽增多,是造成城市迎风区降雨增强的主要原因. 展开更多
关键词 城市化 暴雨 WEATHER Research and Forecasting MODEL 迎风区
在线阅读 下载PDF
FORECAST模型的原理、方法和应用 被引量:6
16
作者 接程月 辛赞红 +2 位作者 信晓颖 江洪 魏晓华 《浙江林学院学报》 CAS CSCD 北大核心 2009年第6期909-915,共7页
数学模型是一个重要的工具,可以很好地帮助科学家和政府决策人员进行规划和预测。最近几十年来,数学模型、经验模型和基于过程的计算机模型的大量涌现,为现代生态学的发展做出了巨大的贡献。其中森林生态系统过程模型就是一类非常重要... 数学模型是一个重要的工具,可以很好地帮助科学家和政府决策人员进行规划和预测。最近几十年来,数学模型、经验模型和基于过程的计算机模型的大量涌现,为现代生态学的发展做出了巨大的贡献。其中森林生态系统过程模型就是一类非常重要的林业模型。FORECAST模型,是一个基于森林生态系统过程的林分水平模型。它可以模拟多种管理策略对森林的影响,而且能够预测森林生态系统结构和功能的未来发展趋势,帮助我们制定合适的管理策略,为森林生态系统的优化管理服务。主要从FORECAST模型的发展概况、原理、方法和实际应用,并针对目前该模型的优势和局限性进行了简介。 展开更多
关键词 森林生态学 FORECAST模型 森林生态系统 森林管理 趋势预测
在线阅读 下载PDF
基于FORECAST模型的长白落叶松人工林经营措施对长期生产力的影响 被引量:9
17
作者 孙志虎 毕永娟 +1 位作者 牟长城 蔡体久 《北京林业大学学报》 CAS CSCD 北大核心 2012年第6期1-6,共6页
为了对东北地区东部落叶松人工林的多代经营提供指导,以黑龙江省孟家岗林场的长白落叶松人工林为对象,采用森林生态系统经营管理模型FORECAST,从轮伐期长度、林地枯落物的管理和采伐剩余物的处理方面,评价不同经营措施下落叶松人工林的... 为了对东北地区东部落叶松人工林的多代经营提供指导,以黑龙江省孟家岗林场的长白落叶松人工林为对象,采用森林生态系统经营管理模型FORECAST,从轮伐期长度、林地枯落物的管理和采伐剩余物的处理方面,评价不同经营措施下落叶松人工林的生物量、养分动态和长期生产力。结果表明:常规森林利用方式下维持落叶松人工林长期生产力的轮伐期应大于35a;落叶松林地枯落物的保留可以显著提高各种轮伐期长度时的林地生产力,短轮伐期时作用效果尤为明显;全面保留采伐剩余物可以维持不同轮伐期条件下落叶松人工用材林的长期生产力。 展开更多
关键词 长白落叶松 人工林 生态系统经营 长期生产力 FORECAST模型
在线阅读 下载PDF
模拟氮添加对油松人工林固碳的长期影响 被引量:4
18
作者 王伟峰 段玉玺 +3 位作者 王博 李晓晶 刘宗奇 刘源 《西部林业科学》 CAS 北大核心 2020年第1期25-30,共6页
在全球气候变化背景下研究北方人工林生态系统对氮沉降的响应具有重要意义。以油松人工林为研究对象,通过野外调查和模型模拟的方法研究了不同氮添加措施对其固碳的长期影响,为人工林的可持续经营提供科学依据。结果表明,在中等立地条件... 在全球气候变化背景下研究北方人工林生态系统对氮沉降的响应具有重要意义。以油松人工林为研究对象,通过野外调查和模型模拟的方法研究了不同氮添加措施对其固碳的长期影响,为人工林的可持续经营提供科学依据。结果表明,在中等立地条件下(SI=18),150年间不同氮添加处理对油松总固碳量的影响依次是:90N(636.56t/hm 2)>120N(635.57t/hm 2)>60N(620.71t/hm 2)>30N(606.36t/hm 2)>0N(588.65t/hm 2)。与对照处理(0N)相比,30N、60N、90N和120N处理都从一定程度上提高了土壤有机碳储量,这可以从一定程度上反映出氮沉降的增加对北方地区人工林生态系统固碳具有促进作用,但从90N处理开始则土壤有机碳储量基本维持稳定状态。 展开更多
关键词 油松人工林 氮添加 固碳量 FORECAST模型 可持续经营
在线阅读 下载PDF
基于FORECAST模型模拟造林密度对杉木人工林碳储量的影响 被引量:6
19
作者 毛行元 唐学君 王伟峰 《江西农业学报》 CAS 2018年第1期41-44,共4页
应用FORECAST模型模拟了不同造林密度对杉木人工林固碳的长期影响,达到优化经营杉木人工林的目标。研究表明,随着杉木造林密度的增加,地上生物碳储量、地下生物碳储量、总生物碳储量、土壤有机碳储量、总碳储量都在增加,但密度超过3333... 应用FORECAST模型模拟了不同造林密度对杉木人工林固碳的长期影响,达到优化经营杉木人工林的目标。研究表明,随着杉木造林密度的增加,地上生物碳储量、地下生物碳储量、总生物碳储量、土壤有机碳储量、总碳储量都在增加,但密度超过3333株/hm^2后趋于稳定;当密度为1667~2500株/hm^2时每个轮伐期内的总生物碳储量都在减少;高密度造林会引起种间对光、水、肥等竞争的加剧,不利于森林生态系统的碳积累。根据立地条件的不同,杉木人工林适宜的造林密度应为2500~3333株/hm^2。 展开更多
关键词 造林密度 立地指数 杉木人工林 碳储量 FORECAST模型
在线阅读 下载PDF
AMSR2辐射率资料同化对台风“山神”分析和预报的影响研究 被引量:12
20
作者 杨春 闵锦忠 刘志权 《大气科学》 CSCD 北大核心 2017年第2期372-384,共13页
在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资... 在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。 展开更多
关键词 微波成像仪 AMSR2(Advanced Microwave Scanning RADIOMETER 2) WRFDA(Weather Research and Forecasting model’s Data Assimilation) 资料同化 台风
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部