期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Focal损失在图像情感分析上的应用研究 被引量:12
1
作者 傅博文 唐向宏 肖涛 《计算机工程与应用》 CSCD 北大核心 2020年第10期179-184,共6页
充分利用Focal损失函数具有挖掘困难样本和调节样本不平衡问题的特性,将其应用在基于神经网络的图像情感分析模型中。为了缓解训练数据集的类别样本不平衡问题,提升情感分类模型的训练效率,对Focal损失函数中参数设置进行了改进。该方... 充分利用Focal损失函数具有挖掘困难样本和调节样本不平衡问题的特性,将其应用在基于神经网络的图像情感分析模型中。为了缓解训练数据集的类别样本不平衡问题,提升情感分类模型的训练效率,对Focal损失函数中参数设置进行了改进。该方法通过类别权重大小来确定平衡参数α,并在神经网络模型训练的不同阶段,采用渐增方式对聚焦因子γ进行调节,然后将改进的Focal损失函数应用于图像情感分析模型的神经网络训练中。仿真实验表明,相比于交叉熵损失函数,改进的Focal损失函数能够提升神经网络对图像情感分析的性能。实验结果表明,所采用方法的准确率、宏召回率、宏精准率分别提升了0.5~2.3个百分点、0.4~3.9个百分点、0.5~3.3个百分点。 展开更多
关键词 图像情感分析 情感图像数据集 卷积神经网络 样本不平衡 focal损失函数
在线阅读 下载PDF
YOLOv5-CCE:一种基于CA和EIoU的目标检测算法
2
作者 王军 黄博文 蔡景贵 《火力与指挥控制》 CSCD 北大核心 2024年第9期90-96,103,共8页
为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特... 为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特征的提取能力;其次为提高回归精度,提出一种基于Focal EIoU Loss改进的Focal CEIoU Loss。实验结果表明,在PASCAL VOC 2007+2012数据集上,YOLOv5-CCE模型在参数量和计算量基本保持不变的情况下,相较于原模型mAP@0.5、mAP@0.5:0.95和准确率分别提升了1.4%、1.3%和3.7%,因此,YOLOv5-CCE模型可以更好地适应复杂环境下的目标检测任务。 展开更多
关键词 YOLOv5算法 eiou focal loss CA注意力机制 目标检测
在线阅读 下载PDF
改进YOLOv8的无人机航拍图像小目标检测算法 被引量:6
3
作者 侯颖 吴琰 +4 位作者 寇旭瑞 黄嘉超 庹金豆 王裕旗 黄晓俊 《计算机工程与应用》 北大核心 2025年第11期83-92,共10页
无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法... 无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法增加小目标物体检测头,采用四个特征检测头提升小目标检测率。设计构造ConvSPD卷积模块和BiFormer注意力增强模块的小目标检测模块组改进YOLOv8骨干网络,有效增强小目标浅层细节特征信息的捕获能力。为确保模型的硬件终端部署需求,采用可重参数化的Rep-PAN模型优化Neck网络。Head网络采用Focaler-CIoU损失函数优化回归定位损失,提高定位精度。在VisDrone-2019数据集上,改进算法平均检测精度达到51.2%,比YOLOv8提高10.9个百分点,检测速度为63.7 FPS,具有良好的实时性。 展开更多
关键词 无人机(UAV) 目标检测 深度学习 YOLOv8算法 注意力机制 focaler-CIoU损失函数
在线阅读 下载PDF
基于改进YOLOv8的实时坑槽检测算法
4
作者 马荣贵 黄训燕 董世浩 《计算机工程》 北大核心 2025年第11期226-234,共9页
针对道路坑槽检测中存在坑槽大小不同、形状不规则导致的特征提取不完全及图像拍摄不满足道路检测车的视角问题,收集并制作不同来源、视角和像素分辨率的坑槽数据集,并对模型进行改进。首先在Backbone部分的C2f结构中引入DCNv3,以获取... 针对道路坑槽检测中存在坑槽大小不同、形状不规则导致的特征提取不完全及图像拍摄不满足道路检测车的视角问题,收集并制作不同来源、视角和像素分辨率的坑槽数据集,并对模型进行改进。首先在Backbone部分的C2f结构中引入DCNv3,以获取更丰富完整的坑槽特征;其次融合压缩和激励(SE)模块的注意力机制,以提高对坑槽特征的提取能力;然后在Neck部分融合双向特征金字塔网络(BiFPN)结构,降低网络的计算量;最后使用Focal-EIoU作为改进模型的损失函数,降低复杂背景对网络检测性能的影响。改进后的YOLOv8-master网络相较于未改进前的网络,坑槽检测精度提高了4.06%,检测速度提高了85帧/s,浮点运算量降低了19.54%。结果表明,所提出的改进方法能有效提高原网络检测坑槽的性能,相比目前主流的目标检测算法,具有一定的先进性。 展开更多
关键词 坑槽检测 可变形卷积 压缩和激励模块 双向特征金字塔网络 focal-eiou损失函数
在线阅读 下载PDF
电网N-1下融合CNN与Transformer的综合能源系统静态安全校核
5
作者 陈厚合 丁唯一 +2 位作者 刘光明 李雪 张儒峰 《电力自动化设备》 北大核心 2025年第5期1-9,18,共10页
风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推... 风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推广到天然气系统,并形成IEGS综合安全指标以划分子系统的运行状态;构建卷积神经网络(CNN)-Transformer神经网络以适应量测数据与校核目标的非线性关系,实现快速校核;考虑到系统数据的量纲和数值差异大以及系统状态离散化的特点,分别对数据进行Z-score标准化和独热编码数值化以提升校核精度,并设计改进焦点损失函数以进一步提取不同的场景下天然气系统运行状态的变化规律。以含高比例新能源的综合能源系统(E5G5、E39G20系统)为算例,验证所提方法的高效性和准确性。 展开更多
关键词 电-气综合能源系统 N-1安全校核 深度学习 卷积神经网络 Transformer神经网络 改进焦点损失函数
在线阅读 下载PDF
煤矿井下暗光环境人员行为检测研究 被引量:1
6
作者 董芳凯 赵美卿 黄伟龙 《工矿自动化》 北大核心 2025年第1期21-30,144,共11页
煤矿井下环境复杂,对部分作业现场人员行为进行检测时易出现漏检与误检问题。针对该问题,提出了一种煤矿井下暗光环境人员行为检测方法,包括暗光环境图像增强和行为检测2个部分。暗光环境图像增强基于自校准光照学习(SCI)进行改进,由图... 煤矿井下环境复杂,对部分作业现场人员行为进行检测时易出现漏检与误检问题。针对该问题,提出了一种煤矿井下暗光环境人员行为检测方法,包括暗光环境图像增强和行为检测2个部分。暗光环境图像增强基于自校准光照学习(SCI)进行改进,由图像增强网络和校准网络构成。人员行为检测通过引入Dynamic Head检测、跨尺度融合模块和Focal-EIoU损失函数来改进YOLOv8n模型。SCI+网络增强后的图像作为人员行为检测模型检测的对象,完成井下暗光环境人员行为的检测任务。实验结果表明:(1)井下暗光环境人员行为检测方法的m AP@0.5为87.6%,较YOLOv8n提升了2.5%,较SSD,Faster RCNN,YOLOv5s,RT-DETR-L分别提升了15.7%,11.5%,0.9%,4.3%。(2)井下暗光环境人员行为检测方法的参数量为3.6×106个,计算量为11.6×109,检测速度为95.24帧/s。(3)在公开数据集EXDark上,井下暗光环境人员行为检测方法的mAP@0.5为74.7%,较YOLOv8n提升了1.5%,表明该方法具有较强的泛化能力。 展开更多
关键词 暗光环境 井下人员行为检测 自校准光照学习 图像增强 SCI+网络 Dynamic Head 跨尺度融合模块 focal-eiou损失函数 YOLOv8n
在线阅读 下载PDF
基于改进YOLOv7的轻量级红花检测方法
7
作者 郭翔羽 南新元 +1 位作者 石天怡 蔡鑫 《东北师大学报(自然科学版)》 北大核心 2025年第3期67-76,共10页
针对目前采摘机器人资源有限、视野有限与训练样本不平衡造成的复杂环境下红花错检和漏检问题,提出一种改进YOLOv7的轻量级红花检测模型.首先,利用深度可分离卷积层构建轻量级骨干网络,减少识别过程中的冗余计算,提高了检测速度;其次,... 针对目前采摘机器人资源有限、视野有限与训练样本不平衡造成的复杂环境下红花错检和漏检问题,提出一种改进YOLOv7的轻量级红花检测模型.首先,利用深度可分离卷积层构建轻量级骨干网络,减少识别过程中的冗余计算,提高了检测速度;其次,在特征提取与融合阶段提出轻量级特征处理D-MP模块,进一步降低网络计算量.同时,针对红花检测中易出现的错检漏检,设计了一种轻量级多尺度连接的特征提取与融合模块,改善细节特征丢失问题,提高不同尺度特征提取与融合能力;最后,使用Focal-DIOU损失函数优化因样本数不平衡造成的难分类与重叠边界框的回归问题,提高检测精度.实验结果表明,改进后的模型平均精度均值达到93.4%,检测速度达到98.6 f/s,相比YOLOv7模型分别提升了3.8%和63.8%,同时运算量减少了58.1%,参数量下降了18.1%,减少对算力与电力的需求,便于模型部署与提高机器人作业时长. 展开更多
关键词 红花采摘 复杂环境 轻量化 YOLOv7 focal-DIOU损失函数
在线阅读 下载PDF
DR_YOLOv8s++:改进卷积注意力机制和损失函数的SAR影像船舰目标检测网络
8
作者 杨明秋 陈国坤 +1 位作者 董燕 左小清 《遥感信息》 北大核心 2025年第2期159-168,共10页
针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池... 针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池化focal modulation networks来提升网络性能,提出的网络命名为DR_YOLOv8s++检测网络。为验证DR_YOLOv8s++网络的有效性和通用性,在SSDD、HRSID数据集上进行实验。结果表明,所提出算法的平均精度均值分别达到98%、97.5%,优于其他经典算法,模型性能提升明显,同其他目标检测算法相比,具有较强的泛化能力。 展开更多
关键词 船舰目标检测 SAR影像 注意力机制 可变形卷积 融合空间金字塔池化 损失函数
在线阅读 下载PDF
改进YOLOv5s的轴承座缺陷检测算法
9
作者 王浪 胥云 +2 位作者 李琦 高亮 张佳骏 《电子测量技术》 北大核心 2025年第18期142-149,共8页
目前数控机床轴承座缺陷检测主要依赖人工目检,无法满足工业生产高精度、高效率和低错误率的要求。针对以上问题,提出基于改进YOLOv5s的数控机床轴承座缺陷检测算法。首先以HardSwish激活函数替换ConvNeXtv2中的GELU,并结合CSC模块提出... 目前数控机床轴承座缺陷检测主要依赖人工目检,无法满足工业生产高精度、高效率和低错误率的要求。针对以上问题,提出基于改进YOLOv5s的数控机床轴承座缺陷检测算法。首先以HardSwish激活函数替换ConvNeXtv2中的GELU,并结合CSC模块提出全新CSCConvNeXtv2-HS结构,用以替换backbone网络C3模块,在降低计算复杂度的同时提升关键信息的特征提取能力;在Neck网络中引入尺度序列特征融合模块,提升模型对多通道信息的提取能力;最后采用Focal-Inner Loss损失函数,在提高训练收敛速度的同时,降低了类别分布不平衡带来的影响。实验表明,改进模型的准确率为91.09%,召回率为81.97%,平均精度均值为84.40%,处理速度为61.73 fps,各项评估指标较原始模型YOLOv5s分别提升2.52%、4.47%、6.7%和1.12 fps,能满足工业生产需求。 展开更多
关键词 YOLOv5s HardSwish激活函数 CSCConvNeXtv2-HS 尺度序列特征融合 focal-Inner loss损失函数
在线阅读 下载PDF
改进UNet++模型的脑肿瘤图像分割算法 被引量:1
10
作者 付豪 张振利 陈源 《河北大学学报(自然科学版)》 北大核心 2025年第4期398-407,共10页
针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,... 针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,CA)关注不同方向上的位置信息以增强特征提取能力,使用Mish激活函数替换ReLU激活函数防止出现梯度消失,提高脑肿瘤图像分割精度和泛化能力;其次,在特征提取后加入SME(squeezeMishexcitation)模块进行挤压和激励,扩大特征图的感受野以增强对肿瘤特征的学习能力;最后,利用焦点Dice损失函数关注模糊样本的分割,从而改善脑肿瘤图像边缘分割模糊的问题.提出的算法在Figshare数据集上进行仿真实验,实验结果表明,在均值交并比(MIoU)、类别平均像素准确率(MPA)、骰子系数(Dice)和豪斯多夫距离(Hausdorffdistance,HD)评估指标上分别达到83.26%、81.91%、86.45%和18.57mm.与3DUNet、Swin-UNet、DD-UNet、LRAE-UNet和AI-UNet等算法进行对比,证明提出的算法分割效果更优. 展开更多
关键词 脑肿瘤图像分割 UNet++ MCAM CA注意力机制 Mish激活函数 SME 焦点Dice损失函数
在线阅读 下载PDF
基于多路径动态卷积的YOLOv5无人机航拍目标检测模型
11
作者 宋苏 汪方正 +1 位作者 高建安 刘泓森 《现代电子技术》 北大核心 2025年第7期72-78,共7页
为了提升无人机航拍影像目标检测的准确率,并实现模型的轻量化,文中对YOLOv5目标检测模型进行了多方面的改进。首先,对YOLOv5的骨干网络进行了优化重组,采用更高效的动态卷积结构和多通道并行处理策略增强特征提取能力和检测精度,并显... 为了提升无人机航拍影像目标检测的准确率,并实现模型的轻量化,文中对YOLOv5目标检测模型进行了多方面的改进。首先,对YOLOv5的骨干网络进行了优化重组,采用更高效的动态卷积结构和多通道并行处理策略增强特征提取能力和检测精度,并显著减少模型参数量;其次,改进了损失函数,引入Focal⁃EIoU损失函数,更适合无人机航拍图像的特点,进一步提升了模型的检测精度;此外,将原本耦合的检测头进行了解耦处理,设计了轻量级解耦头,使分类、回归和置信度任务解耦处理,提高了检测精度和收敛速度,并合理控制了模型参数量。实验结果表明,改进后的DEP⁃YOLO模型在mAP@0.5指标上提升了9.6%,同时模型大小和参数量分别降低了77.93%和83.82%。综上所述,文中提出的综合改进策略显著提升了无人机航拍影像目标检测的精度,并实现了模型的轻量化,验证了其在航拍影像目标检测领域的有效性。 展开更多
关键词 目标检测 无人机航拍 YOLOv5 模型轻量化 动态卷积 解耦检测头 focal⁃eiou损失函数 特征提取
在线阅读 下载PDF
改进YOLOv8的实时轻量化鲁棒绿篱检测算法
12
作者 张佳承 韦锦 陈义时 《计算机工程》 北大核心 2025年第7期362-374,共13页
针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变... 针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变形卷积增加了偏移量特征通道数,以加速模型的推理,增强算法实时性。在颈部网络中引入分组空间卷积(GSConv)轻量级卷积技术和slim-neck设计范式,并通过融合标准卷积、深度可分离卷积和Shuffle模块的思想,降低模型的参数量,实现模型的轻量化。设计一种具有双重加权机制的Focal-WIoU损失函数,WIoU中的双层交叉注意力机制可有效降低多个绿篱相连和遮挡时的误检率,并且利用Focal Loss权重因子提升对特殊形状绿篱等难分类样本的检测精度。另外采用TRADES方法的对抗训练策略,在分类问题鲁棒性与精度之间进行有效权衡。实验结果表明,相比基线算法YOLOv8n,MGW-YOLO的mAP@0.5和mAP@0.5∶0.95分别提高了3.29和2.87百分点,在无人驾驶底盘上的实验结果表明,MGW-YOLO相较于原始算法的预处理时间、每帧平均推理时间和每帧后处理时间分别降低了0.7 ms、10.7 ms和0.7 ms,检测速度提升了15.7帧/s,适用于绿篱修剪机在道路两侧实时性作业的需求。 展开更多
关键词 YOLOv8算法 目标检测 C2f_ModuGhost+模块 分组空间卷积轻量级卷积 focal-WIoU损失函数 对抗训练
在线阅读 下载PDF
基于改进HHO的飞行数据异常诊断
13
作者 张迪 马文彬 +1 位作者 柴源通 曾佩佩 《计算机工程与设计》 北大核心 2025年第3期934-940,F0003,共8页
为解决民机飞行数据异常诊断方法准确率低、鲁棒性不足等问题,提出一种改进HHO-MCN-BiLSTM飞行数据异常诊断方法。采用改进的时空网络,通过融合多尺度输入卷积、多尺度残差和双向长短时记忆网络对飞行数据进行特征提取,获取更丰富的特... 为解决民机飞行数据异常诊断方法准确率低、鲁棒性不足等问题,提出一种改进HHO-MCN-BiLSTM飞行数据异常诊断方法。采用改进的时空网络,通过融合多尺度输入卷积、多尺度残差和双向长短时记忆网络对飞行数据进行特征提取,获取更丰富的特征信息;在网络输出端添加多头注意力机制对特征信息进行加权处理;利用改进的哈里斯鹰优化算法对网络结构以及模型超参数进行寻优。实验结果表明,改进模型的检测精度可达94.96%,性能优于对比算法,可有效改善飞行数据异常诊断的准确率。 展开更多
关键词 飞行数据 异常诊断 多尺度残差卷积 双向长短时网络 多头注意力机制 改进哈里斯鹰搜索算法 focal loss函数
在线阅读 下载PDF
基于改进YOLOv7的复杂环境下红花采摘识别 被引量:47
14
作者 王小荣 许燕 +1 位作者 周建平 陈金荣 《农业工程学报》 EI CAS CSCD 北大核心 2023年第6期169-176,共8页
针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测... 针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测精准率,改进Focal Loss损失函数提升多分类任务下不均衡样本的识别率。经试验,改进后的模型各类别样本的检测平均准确率达到88.5%,与改进前相比提高了7个百分点,不均衡类别样本平均精度提高了15.9个百分点,与其他模型相比,检测平均准确率与检测速度均大幅提升。改进后的模型可以准确地实现对红花的检测,模型参数量小,识别速度快,适合在红花采摘机械上进行迁移部署,可为红花机械化实时采摘研究提供技术支持。 展开更多
关键词 图像识别 图像处理 复杂环境 YOLOv7 注意力机制 多分类focal loss损失函数 红花采摘
在线阅读 下载PDF
基于改进深度相对距离学习框架的车辆再识别算法 被引量:6
15
作者 胡聪 李超 +2 位作者 周甜 朱爱军 许川佩 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第12期245-252,共8页
随着智慧交通的快速发展,摄像头下的车辆重新识别任务受到了计算机视觉界研究者的高度关注。本文提出一种基于改进深度相对距离学习模型的车辆再识别算法。首先,针对原先深度相对距离学习框架中特征提取网络简单、难以提取车辆特征,提... 随着智慧交通的快速发展,摄像头下的车辆重新识别任务受到了计算机视觉界研究者的高度关注。本文提出一种基于改进深度相对距离学习模型的车辆再识别算法。首先,针对原先深度相对距离学习框架中特征提取网络简单、难以提取车辆特征,提出采用RepNet网络替代原网络架构中的网络。然后,提出在模型中使用焦点损失函数Focal Loss,减少简单样本在训练中所占的权重,解决在车辆再识别数据库中常会出现的正负样本不平衡问题。最后,利用余弦相似度量判断图像之间的相似度。在VehicleID数据集上的实验表明,所提算法的模型车辆型号识别率为98.18%,较原DRDL模型提高了约14.7%,车辆颜色的识别率是96.28%。在车辆再识别任务中,所用模型的MAP值达0.709,较原模型提高约0.16,证明了所提算法的有效性。 展开更多
关键词 卷积神经网络 车辆再识别 细粒度学习 焦点损失函数
在线阅读 下载PDF
基于改进YOLOX算法的杨梅成熟度检测方法 被引量:2
16
作者 项新建 周焜 +2 位作者 费正顺 郑永平 姚佳娜 《中国农机化学报》 北大核心 2023年第10期201-208,共8页
为实现杨梅采摘智能化,开发杨梅成熟度检测设备,提出一种基于改进YOLOX-NANO算法的杨梅果实成熟度检测方法。通过在特征加强提取网络层中引入通道注意力模块,提高网络对通道特征的提取能力;引入焦点损失函数代替标准交叉熵损失函数,解... 为实现杨梅采摘智能化,开发杨梅成熟度检测设备,提出一种基于改进YOLOX-NANO算法的杨梅果实成熟度检测方法。通过在特征加强提取网络层中引入通道注意力模块,提高网络对通道特征的提取能力;引入焦点损失函数代替标准交叉熵损失函数,解决单阶段网络正负样本不均衡问题,避免梯度方向指向非最优解;使用高效交并比损失函数,提高网络模型对目标识别的准确率。试验结果表明,在自建数据集上与原YOLOX-NANO相比,改进YOLOX-NANO算法对于三种不同成熟度杨梅果实的识别精度均有提升,平均精度达到92.67%,而网络模型大小只增加0.059 MB,推理速度不变,在精度达到与标准结构网络相当的前提下,更易于部署到嵌入式设备中。 展开更多
关键词 杨梅 YOLOX-NANO算法 通道注意力机制 焦点损失函数 高效交并比
在线阅读 下载PDF
一种双视图信息融合的乳腺肿块自动检测算法 被引量:6
17
作者 蒋慧琴 王博霖 +2 位作者 马岭 于湛 徐红卫 《郑州大学学报(理学版)》 CAS 北大核心 2020年第4期28-36,共9页
针对基于单视图的深度学习乳腺肿块检测算法假阳性率较高问题,提出一种双视图信息融合的乳腺肿块自动检测算法。首先建立双曲正割模型,利用互相关法自动搜索乳腺X线摄影图像中的肿块感兴趣区域,并根据胸壁线、乳头位置在双侧头尾位和内... 针对基于单视图的深度学习乳腺肿块检测算法假阳性率较高问题,提出一种双视图信息融合的乳腺肿块自动检测算法。首先建立双曲正割模型,利用互相关法自动搜索乳腺X线摄影图像中的肿块感兴趣区域,并根据胸壁线、乳头位置在双侧头尾位和内外侧斜位图像上建立物理坐标系,筛选标注假阳性区域以在数据层扩充监督学习信息;其次,设计空间金字塔池化模块有效融合基于YOLOv3主干网络提取的多尺度局部特征以提高检测敏感性;最后,在类别损失函数中增加聚焦参数,通过调节算法学习过程以提高检测特异性。充分利用双视图数据提供的先验信息提高检测正确率,实验结果表明检测敏感性达到92.0%,特异性达到87.7%,平均每幅图像假阳性0.041个,其检测性能较原模型大幅提升,且具有较好的鲁棒性。 展开更多
关键词 乳腺癌 乳腺X线摄影 计算机辅助诊断 双视图 YOLOv3 faster-RCNN 空间金字塔池化 聚焦损失函数
在线阅读 下载PDF
计及样本不平衡与重叠的暂态稳定评估方法 被引量:16
18
作者 李楠 李保罗 +1 位作者 朱建华 李天云 《电力系统自动化》 EI CSCD 北大核心 2020年第21期64-71,共8页
交直流混联系统的稳定性分析复杂且样本不平衡,当前基于数据挖掘的暂态稳定评估方法只追求对不稳定样本的识别精度,忽略了重叠区域样本难分类的问题,导致其综合性能未得到实质性的提升。针对此问题,提出一种计及样本不平衡与重叠的暂态... 交直流混联系统的稳定性分析复杂且样本不平衡,当前基于数据挖掘的暂态稳定评估方法只追求对不稳定样本的识别精度,忽略了重叠区域样本难分类的问题,导致其综合性能未得到实质性的提升。针对此问题,提出一种计及样本不平衡与重叠的暂态稳定评估方法。所提方法通过焦点损失函数来修正轻梯度提升机(LightGBM),自动根据样本的类别以及是否处于重叠区域中的“灰色地带”赋予其不同的权重,从而优化梯度下降的方向。该方法在提升对不稳定样本识别精度的同时,也减少了对稳定样本的误判。在修改的IEEE 68节点系统和中国某省级电网上的算例表明,所提方法在含有噪声且不平衡的数据集上有良好的评估性能。 展开更多
关键词 交直流混联系统 暂态稳定评估 重叠区域样本 样本不平衡 焦点损失函数 轻梯度提升机
在线阅读 下载PDF
交通场景中改进 SSD算法的小尺度行人检测研究 被引量:6
19
作者 汪慧兰 戴舒 +1 位作者 刘丹 王桂丽 《计算机工程与应用》 CSCD 北大核心 2022年第2期201-207,共7页
由于交通场景中的行人目标所处的背景环境复杂、目标较小等因素,使得目前的行人检测算法在实际应用中存在检测精度不高、检测速度较慢的问题。因此行人检测模块作为高级辅助驾驶系统的核心模块,一直以来都是目标检测的研究热点之一。针... 由于交通场景中的行人目标所处的背景环境复杂、目标较小等因素,使得目前的行人检测算法在实际应用中存在检测精度不高、检测速度较慢的问题。因此行人检测模块作为高级辅助驾驶系统的核心模块,一直以来都是目标检测的研究热点之一。针对交通场景中小尺度行人目标,将传统的SSD网络结构中的主干网络卷积层结合Inception模块中的稀疏连接来优化卷积结构,从而增强网络的特征提取能力。同时利用残差结构组成的预测模块代替传统的两个3×3大小的卷积核来进一步提取特征图的深层特征,提高对小尺度行人目标的检测精度。引入FocalLoss函数作为网络的分类损失函数,使得损失函数更加关注于包含更多有用信息的困难负样本,解决训练过程中正负样本不平衡的问题,加快网络的收敛和稳定。实验结果表明,对于交通场景中小尺度的行人目标改进的SSD算法在检测精度和速度上都有所提高。 展开更多
关键词 行人检测 SSD算法 残差块 focalloss函数
在线阅读 下载PDF
一种改进YOLOv3的手势识别算法 被引量:8
20
作者 睢丙东 张湃 王晓君 《河北科技大学学报》 CAS 北大核心 2021年第1期22-29,共8页
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为... 为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数。结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍。采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力。 展开更多
关键词 计算机神经网络 YOLOv3 目标检测 手势识别 DIoU focal损失函数
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部