3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have...3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.展开更多
利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色...利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。展开更多
基金funded by the National Natural Science Foundation of China(Grant No.06101213)the National Natural Science Foundation of China(Grant No.22105160).
文摘3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。
文摘利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。