Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.I...Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.展开更多
Based on the first-principles calculations of density functional theory,co-adsorption models of C or CO with Cl2 on rutile TiO2(100)surface were established.The adsorption structures and electronic properties during c...Based on the first-principles calculations of density functional theory,co-adsorption models of C or CO with Cl2 on rutile TiO2(100)surface were established.The adsorption structures and electronic properties during chlorination process were predicted.Then,the adsorption energy,charge density,electron density difference and density of state of the adsorption structures were calculated and analyzed.The stabilities of the adsorption structures and the charge distributions between atoms were studied.It was found that both C and CO could promote the adsorption reactions of Cl2 on TiO2(100)surface,and C was more favorable to the adsorption process.The results show that the adsorption process of Cl2 on TiO2(100)surface was physisorption,and the co-adsorption processes of C or CO with Cl2 on TiO2(100)surface were chemisorptions.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties ...The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.展开更多
Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave met...Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.展开更多
The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as...The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that o...The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.展开更多
Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermor...Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropie ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the 〈 1 ^-1 0〉(110) slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.展开更多
Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed T...Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed TiC_(P)in matrix using master alloying method.The TiC(002)/Fe(011)interface model was established based on the orientation relationship of(011)_(Fe)//(002)_(TiC),and[100]_(Fe)//[100]_(TiC).The effects of single and co-doping of alloying elements(Mn,Cr,Mo,Ni,Cu and Si)on the interface bonding behavior of TiC/Fe in composites were investigated in conjunction with first principles.The results demonstrate that the interface between TiC and matrix is continuous and stable.Compared to the undoped TiC/Fe interface,single-doping Mn,Cr,and Mo can improve the stability of TiC/Fe interface and enhance tensile strength.Conversely,single-doping with Ni,Cu,and Si reduced the interface stability and marginally reduces tensile strength.Relative to the undoped and singly Ni-doped TiC/Fe interfaces,the co-doping Ni-Mo boosts binding energy and separation work at the TiC/Fe interface,which is conducive to the interface bonding between TiC_(P)and matrix,and thus improves the mechanical properties of composites.Thus,in the alloying design of TiC particle reinforced low-alloy SMCs,incorporating Mn,Cr,Mo,and Ni into matrix can enhance the overall mechanical properties of composites.展开更多
The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decrea...The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation, resulting in a more stable structure of λ-Mn_xCr_(2-x)O_4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn—O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn—O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Codoping will enhance the stability of λ-MnO_2 and hence improve the electrochemistry performance of Li_xMn_2O_4.展开更多
The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GG...The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GGA) was used to describe the exchange-correlation potential.Starting from the elastic constants,bulk modulus,shear modulus,elastic modulus and Poisson ratio of Al-doped MoSi2 were obtained by using the Hill method.The results indicate that conductivity of Al-doped MoSi2 is improved to some extent in comparison with that of pure MoSi2 due to the orbit hybridization of Mo 4d,Al 3p and Si 3p electrons.In addition,calculations show that the elastic modulus and the brittleness of Al-doped MoSi2 are smaller than those of pure MoSi2,which implies that it is feasible to toughen MoSi2 by doping Al.The agreement of the conclusion with experiment shows that the present theory is reasonable.展开更多
The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O....The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.展开更多
Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structu...Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structure,which has attracted significant attention due to its structural robustness and relatively high specific capacity.However,it has short cycle life and poor rate capability.To address these issues,Ti atoms,known for enhancing structural stability,and Cu atoms,which facilitate desodiation,were doped intoβ-NaMnO_(2) by first-principles calculation and crystal orbital Hamilton population(COHP)analysis.β-NaMn_(0.8)Ti_(0.1)Cu_(0.1)O_(2) exhibits a notable increase in reversible specific capacity and remarkable rate properties.Operating at a current density of 0.2C(1C=219 mA·g^(–1))and within a voltage range of 1.8–4.0 V,the modified material delivers an initial discharge capacity of 132 mAh·g^(–1).After charge/discharge testing at current densities of 0.2C,0.5C,1C,3C,and 0.2C,the material still maintains a capacity of 110 mA h·g^(–1).The doping of Ti atoms slows down the changes in the crystal structure,resulting in only minimal variation in the lattice constant c/a during the desodiation process.Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V,respectively.The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity.This study provides insights into modifyingβ-NaMnO_(2) as a cathode material,offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries.展开更多
Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(N...Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(No.29).The structure of Li(NH_(2)SO_(3))can be described as a 3D network formed by[LiO_(4)]^(7-)polyhedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.Na(NH_(2)SO_(3))crystallizes in the polar space group P2_(1)2_(1)2_(1)(No.19).The structure of Na(NH_(2)SO_(3))can be described as a 3D network formed by distorted[NaO_(6)]^(11-)octahedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.The UV-Vis-near-infrared spectra demonstrate that Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))possessed large optical band gaps of 5.25 and 4.81 eV,respectively.Powder second-harmonic generation(SHG)measurements demonstrate that the SHG intensity of Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))were 0.32 times and 0.31 times that of KH_(2)PO_(4),respectively.First-principles calculations confirm the nonlinear optical performance mainly derived from the synergistic effect of amino sulfonate anions and alkali metal oxide anionic polyhedra.CCDC:2339109,Li(NH_(2)SO_(3));2339110,Na(NH_(2)SO_(3)).展开更多
High-temperature Ni-based alloys are widely used in the aerospace field due to their excellent properties,but the shortcomings of brittle fracture at the grain boundaries and poor plasticity at room temperature also l...High-temperature Ni-based alloys are widely used in the aerospace field due to their excellent properties,but the shortcomings of brittle fracture at the grain boundaries and poor plasticity at room temperature also limit their development to a certain extent.Researchers found that there areγ′precipitation phases similar to Ni_(3)Al in Pt-Al based alloys.In this paper,the CASTEP code of Materials Studio software package is used to simulate the thermal and mechanical properties ofγ′-Pt_(3)Al phase andγ′-Ni_(3)Al phase.By comparing the performance characteristics of the electronic structure,mechanical properties and point defect structure of the two,it is found that the stability,elastic deformation resistance and high temperature creep resistance of theγ′-Pt_(3)Al phase are better than those of theγ′-Ni_(3)Al phase.This will provide theoretical guidance for promoting the development of Pt-Al-based high-temperature materials.展开更多
By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices s...By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.展开更多
By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the...By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested.展开更多
基金Project(61172047) supported by the National Natural Science Foundation of China
文摘Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.
基金Projects(51674052,51974046)supported by the National Natural Science Foundation of ChinaProject(cstc2018jcyjAX0003)supported by the Chongqing Research Program of Basic Research and Frontier Technology,China。
文摘Based on the first-principles calculations of density functional theory,co-adsorption models of C or CO with Cl2 on rutile TiO2(100)surface were established.The adsorption structures and electronic properties during chlorination process were predicted.Then,the adsorption energy,charge density,electron density difference and density of state of the adsorption structures were calculated and analyzed.The stabilities of the adsorption structures and the charge distributions between atoms were studied.It was found that both C and CO could promote the adsorption reactions of Cl2 on TiO2(100)surface,and C was more favorable to the adsorption process.The results show that the adsorption process of Cl2 on TiO2(100)surface was physisorption,and the co-adsorption processes of C or CO with Cl2 on TiO2(100)surface were chemisorptions.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Project(51401099)supported by the National Natural Science Foundation of ChinaProject(201501079)supported by the Doctor Startup Foundation of Liaoning Province,China
文摘The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.
基金Project(20070533118) supported by the Doctoral Discipline Foundation of Ministry of Education of ChinaProjects(50471058, 50271085) supported by the National Natural Science Foundation of ChinaProject supported by the Postdoctoral Foundation of Central South University, China
文摘Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.
基金Project(51021063)supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2011CB610401)supported by National Basic Research Program of ChinaProject(2014M552150)supported by Postdoctoral Science Foundation of China
文摘The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金Project(51574176)supported by the National Natural Science Foundation of ChinaProject(143020142-S)supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(TYAL),ChinaProject(201603D421028)supported by the Key Research and Development Program of Shanxi Province(International Cooperative Project),China
文摘The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.
基金Project(51071053)supported by the National Natural Science Foundation of ChinaProject(X071117)supported by the Scientific Research Foundation of Guangxi University,ChinaProject(KF0803)supported by the Open Project of Key Laboratory of Materials Design and Preparation Technology of Hunan Province,China
文摘Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropie ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the 〈 1 ^-1 0〉(110) slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.
基金Project supported by the Special Funding Support for the Development of 1500 Meter Subsea Christmas Tree and Control System,China。
文摘Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed TiC_(P)in matrix using master alloying method.The TiC(002)/Fe(011)interface model was established based on the orientation relationship of(011)_(Fe)//(002)_(TiC),and[100]_(Fe)//[100]_(TiC).The effects of single and co-doping of alloying elements(Mn,Cr,Mo,Ni,Cu and Si)on the interface bonding behavior of TiC/Fe in composites were investigated in conjunction with first principles.The results demonstrate that the interface between TiC and matrix is continuous and stable.Compared to the undoped TiC/Fe interface,single-doping Mn,Cr,and Mo can improve the stability of TiC/Fe interface and enhance tensile strength.Conversely,single-doping with Ni,Cu,and Si reduced the interface stability and marginally reduces tensile strength.Relative to the undoped and singly Ni-doped TiC/Fe interfaces,the co-doping Ni-Mo boosts binding energy and separation work at the TiC/Fe interface,which is conducive to the interface bonding between TiC_(P)and matrix,and thus improves the mechanical properties of composites.Thus,in the alloying design of TiC particle reinforced low-alloy SMCs,incorporating Mn,Cr,Mo,and Ni into matrix can enhance the overall mechanical properties of composites.
基金Project(20376086) supported by National Natural Science Foundation of China
文摘The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation, resulting in a more stable structure of λ-Mn_xCr_(2-x)O_4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn—O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn—O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Codoping will enhance the stability of λ-MnO_2 and hence improve the electrochemistry performance of Li_xMn_2O_4.
基金Project(20080431025) supported by Chinese Postdoctoral Science FoundationProject(08JJ3005) supported by Hunan Provincial Natural Science Foundation of ChinaProject(2007) supported by Postdoctoral Science Foundation of Central South University,China
文摘The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GGA) was used to describe the exchange-correlation potential.Starting from the elastic constants,bulk modulus,shear modulus,elastic modulus and Poisson ratio of Al-doped MoSi2 were obtained by using the Hill method.The results indicate that conductivity of Al-doped MoSi2 is improved to some extent in comparison with that of pure MoSi2 due to the orbit hybridization of Mo 4d,Al 3p and Si 3p electrons.In addition,calculations show that the elastic modulus and the brittleness of Al-doped MoSi2 are smaller than those of pure MoSi2,which implies that it is feasible to toughen MoSi2 by doping Al.The agreement of the conclusion with experiment shows that the present theory is reasonable.
基金Project(2014GXNSFAA118342)supported by Guangxi Natural Science Foundation,ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,ChinaProject supported by High-level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),China
文摘The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.
基金National Key R&D Program of China(2022YFB3807700)National Natural Science Foundation of China(22133005,22103093)+4 种基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600,23ZR1472600)Youth Innovation Promotion Association CAS(2022251)Shanghai Super Post-Doctor Incentive Program(2022665)China Postdoctoral Science Foundation(2023M733621)Shanghai Explorer Program(Batch I)(23TS1401500)。
文摘Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structure,which has attracted significant attention due to its structural robustness and relatively high specific capacity.However,it has short cycle life and poor rate capability.To address these issues,Ti atoms,known for enhancing structural stability,and Cu atoms,which facilitate desodiation,were doped intoβ-NaMnO_(2) by first-principles calculation and crystal orbital Hamilton population(COHP)analysis.β-NaMn_(0.8)Ti_(0.1)Cu_(0.1)O_(2) exhibits a notable increase in reversible specific capacity and remarkable rate properties.Operating at a current density of 0.2C(1C=219 mA·g^(–1))and within a voltage range of 1.8–4.0 V,the modified material delivers an initial discharge capacity of 132 mAh·g^(–1).After charge/discharge testing at current densities of 0.2C,0.5C,1C,3C,and 0.2C,the material still maintains a capacity of 110 mA h·g^(–1).The doping of Ti atoms slows down the changes in the crystal structure,resulting in only minimal variation in the lattice constant c/a during the desodiation process.Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V,respectively.The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity.This study provides insights into modifyingβ-NaMnO_(2) as a cathode material,offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries.
文摘Two alkali-metal sulfamates nonlinear optical(NLO)crystals,Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3)),have been obtained through the facile evaporation method.Li(NH_(2)SO_(3))crystallizes in the polar space group Pca2_(1)(No.29).The structure of Li(NH_(2)SO_(3))can be described as a 3D network formed by[LiO_(4)]^(7-)polyhedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.Na(NH_(2)SO_(3))crystallizes in the polar space group P2_(1)2_(1)2_(1)(No.19).The structure of Na(NH_(2)SO_(3))can be described as a 3D network formed by distorted[NaO_(6)]^(11-)octahedral connecting with NH_(2)SO_(3)^(-)tetrahedra through corner-sharing.The UV-Vis-near-infrared spectra demonstrate that Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))possessed large optical band gaps of 5.25 and 4.81 eV,respectively.Powder second-harmonic generation(SHG)measurements demonstrate that the SHG intensity of Li(NH_(2)SO_(3))and Na(NH_(2)SO_(3))were 0.32 times and 0.31 times that of KH_(2)PO_(4),respectively.First-principles calculations confirm the nonlinear optical performance mainly derived from the synergistic effect of amino sulfonate anions and alkali metal oxide anionic polyhedra.CCDC:2339109,Li(NH_(2)SO_(3));2339110,Na(NH_(2)SO_(3)).
文摘High-temperature Ni-based alloys are widely used in the aerospace field due to their excellent properties,but the shortcomings of brittle fracture at the grain boundaries and poor plasticity at room temperature also limit their development to a certain extent.Researchers found that there areγ′precipitation phases similar to Ni_(3)Al in Pt-Al based alloys.In this paper,the CASTEP code of Materials Studio software package is used to simulate the thermal and mechanical properties ofγ′-Pt_(3)Al phase andγ′-Ni_(3)Al phase.By comparing the performance characteristics of the electronic structure,mechanical properties and point defect structure of the two,it is found that the stability,elastic deformation resistance and high temperature creep resistance of theγ′-Pt_(3)Al phase are better than those of theγ′-Ni_(3)Al phase.This will provide theoretical guidance for promoting the development of Pt-Al-based high-temperature materials.
基金Project(07JJ3102) supported by the Natural Science Foundation of Hunan Province, ChinaProject(1343-74236000006) supported by the Graduate Foundation of Hunan Province, ChinaProject(11MY20) supported by the Mittal Entrepreneurship Program of China
文摘By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(10C1171)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(11JJ3073)supported by the Natural Science Foundation of Hunan Province,China
文摘By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested.