期刊文献+
共找到21,506篇文章
< 1 2 250 >
每页显示 20 50 100
A BICUBIC B-SPLINE FINITE ELEMENT METHOD FOR FOURTH-ORDER SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
1
作者 Fangfang DU Tongjun SUN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2411-2421,共11页
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines... A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 bicubic B-spline finite element method optimal control problem Bogner-Fox-Schmit element Crank-Nicolson scheme numerical experiment
在线阅读 下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
2
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
在线阅读 下载PDF
Dynamic Characteristics of Irregular Ice Floes Based on Polyhedral Discrete Element Method
3
作者 LI Ji WANG Si-qiang +1 位作者 LIU Lu JI Shun-ying 《船舶力学》 EI CSCD 北大核心 2024年第12期1849-1863,共15页
In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. ... In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics. 展开更多
关键词 discrete element method GJK-EPA algorithm sea ice dynamics floe geometry
在线阅读 下载PDF
Interwell interference model of horizontal wells in shale gas reservoirs based on multi-connected boundary element method
4
作者 Yu-Long Zhao Hao-Yan Feng +4 位作者 Cheng-Zhong Bu Li-Sha Zhou Jian-Fa Wu Lie-Hui Zhang Ying-Fang Zhou 《Petroleum Science》 CSCD 2024年第6期4278-4297,共20页
Due to the wide application of closely spaced multi-well horizontal pads for developing unconventional gas reservoirs,interference between wells becomes a significant concern.Communication between wells mainly occurs ... Due to the wide application of closely spaced multi-well horizontal pads for developing unconventional gas reservoirs,interference between wells becomes a significant concern.Communication between wells mainly occurs through natural fractures.However,previous studies have found that interwell communication through natural fractures is varied,and non-communication also appears in the mid and late stages of production due to natural fracture closure.This study proposes a boundary element method for coupling multi-connected regions for the first time.Using this method,we coupled multiple flow fields to establish dual-well models with various connectivity conditions of the stimulated reservoir volume(SRV)region.These models also take into consideration of adsorption and desorption mechanism of natural gas as well as the impact of fracturing fluid retention.The study found that when considering the non-communication of SRV regions between multi-well horizontal pads,the transient behavior of the targeted well exhibits a transitional flow stage occurring before the well interference flow stage.In addition,sensitivity analysis shows that the well spacing and production regime,as well as the connectivity conditions of the SRV region,affect the timing of interwell interference.Meanwhile,the productivity of the two wells,reservoir properties,and fracturing operations affect the intensity of interwell interference. 展开更多
关键词 Interwell interference Multi-connected boundary element method Shalegas reservoirs Complex flow mechanisms Transient analysis
在线阅读 下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
5
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
在线阅读 下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
6
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
7
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
在线阅读 下载PDF
STOCHASTIC BOUNDARY ELEMENT METHODS FOR 3D PROBLEMS WITH BODY FORCES AND ITS APPLICATION IN RELIABILITY OF TURBINE DISKS
8
作者 温卫东 康继东 孙晓玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期143-148,共6页
The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach... The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach of partial derivation with respect to stochastic variables,considering the yield limit,rotation speeds and material density to be the fundamental stochastic variables.Through analyzing a numerical example and a turbo-disk of an aeroengine,the results show that the method developed is successful. 展开更多
关键词 boundary element stochastic method STRENGTH RELIABILITY numerical analysis
在线阅读 下载PDF
ANALYSIS OF NONLINEAR PIEZOELECTRIC CIRCULAR SHALLOW SPHERICAL SHELLS BY DIFFERENTIAL QUADRATURE ELEMENT METHOD
9
作者 王永亮 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期130-136,共7页
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ... The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations. 展开更多
关键词 differential quadrature element method non linearity PIEZOELECTRICITY circular shallow spherical shell
在线阅读 下载PDF
PARTITION OF UNITY FINITE ELEMENT METHOD FOR SHORT WAVE PROPAGATION IN SOLIDS 被引量:2
10
作者 李锡夔 周浩洋 《应用数学和力学》 EI CSCD 北大核心 2005年第8期965-971,共7页
A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element... A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency. 展开更多
关键词 短波传播 固体介质 单位分解有限元法
在线阅读 下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
11
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
在线阅读 下载PDF
Effect of Interconnect Linewidth on Evolution of Intragranular Microcracks Due to Electromigration Analyzed by Finite Element Method 被引量:3
12
作者 HE Dingni HUANG Peizhen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期290-297,共8页
The effect of interconnect linewidth on the evolution of intragranular microcracks due to surface diffusion induced by electromigration is analyzed by finite element method.The numerical results indicate that there ex... The effect of interconnect linewidth on the evolution of intragranular microcracks due to surface diffusion induced by electromigration is analyzed by finite element method.The numerical results indicate that there exists critical values of the linewidth hc,the electric fieldχc and the aspect ratioβc.When h>hc,χ<χc orβ<βc,the microcrack will evolve into a stable shape as it migrates along the interconnect line.When h≤hc,χ≥χc orβ≥βc,the microcrack will split into two smaller microcracks.The critical electric field,the critical aspect ratio and the splitting time have a stronger dependence on the linewidth when h≤6.In addition,the decrease of the linewidth,the increase of the electric field or the aspect ratio is beneficial to accelerate microcrack splitting,which may delay the open failure of the interconnect line. 展开更多
关键词 finite element method surface diffusion ELECTROMIGRATION LINEWIDTH MICROCRACK EVOLUTION
在线阅读 下载PDF
A control volume based finite element method for simulating incompressible two-phase flow in heterogeneous porous media and its application to reservoir engineering 被引量:3
13
作者 SADRNEJAD S A GHASEMZADEH H +1 位作者 GHOREISHIAN AMIRI S A MONTAZERI G H 《Petroleum Science》 SCIE CAS CSCD 2012年第4期485-497,共13页
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e... Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media. 展开更多
关键词 Finite element method control volume two-phase flow HETEROGENEITY porous media WATERFLOODING
在线阅读 下载PDF
Evaluation of interfacial properties in SiC composites using an improved cohesive element method 被引量:2
14
作者 Hang Zang Xing-Qing Cao +2 位作者 Chao-Hui He Zhi-Sheng Huang Yong-Hong Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第2期82-90,共9页
A two-dimensional axisymmetric finite element model based on an improved cohesive element method was developed to simulate interfacial debonding, sliding friction, and residual thermal stresses in SiC composites durin... A two-dimensional axisymmetric finite element model based on an improved cohesive element method was developed to simulate interfacial debonding, sliding friction, and residual thermal stresses in SiC composites during single-fiber push-out tests to extract the interfacial bond strength and frictional stress. The numerical load–displacement curves agree well with experimental curves,indicating that this cohesive element method can be used for calculating the interfacial properties of SiC composites.The simulation results show that cracks are most likely to occur at the ends of the experimental sample, where the maximum shear stress is observed and that the interfacial shear strength and constant sliding friction stress decrease with an increase in temperature. Moreover, the load required to cause complete interfacial failure increases with the increase in critical shear strength, and the composite materials with higher fiber volume fractions have higher bearing capacities. In addition, the initial failure load increases with an increase in interphase thickness. 展开更多
关键词 Fiber push-out test COHESIVE element model SiC composites Finite element method INTERFACIAL properties
在线阅读 下载PDF
Forward and inverse problem for cardiac magnetic field and electric potential using two boundary element methods 被引量:3
15
作者 唐发宽 王倩 +3 位作者 华宁 唐雪正 陆宏 马平 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期144-153,共10页
This paper discusses the forward and inverse problem for cardiac magnetic fields and electric potentials. A torso-heart model established by boundary element method (BEM) is used for studying the distributions of ca... This paper discusses the forward and inverse problem for cardiac magnetic fields and electric potentials. A torso-heart model established by boundary element method (BEM) is used for studying the distributions of cardiac magnetic fields and electric potentials. Because node-to-node and triangle-to-triangle BEM can lead to discrepant field distributions, their properties and influences are compared. Then based on constructed torso-heart model and supposed current source functional model-current dipole array, the magnetic and electric imaging by optimal constrained linear inverse method are applied at the same time. Through figure and reconstructing parameter comparison, though the magnetic current dipole array imaging possesses better reconstructing effect, however node-to-node BEM and triangleto-triangle BEM make little difference to magnetic and electric imaging. 展开更多
关键词 cardiac magnetic imaging cardiac electric imaging boundary element method torsoheart model
在线阅读 下载PDF
Increment-Dimensional Scaled Boundary Finite Element Method for Solving Transient Heat Conduction Problem 被引量:2
16
作者 Li Fengzhi Li Tiantian +1 位作者 Kong Wei Cai Junfeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期1073-1079,共7页
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness... An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method. 展开更多
关键词 heat conduction scaled BOUNDARY FINITE element method(SBFEM) temperature field accuracy
在线阅读 下载PDF
TWO-LEVEL MULTISCALE FINITE ELEMENT METHODS FOR THE STEADY NAVIER-STOKES PROBLEM 被引量:2
17
作者 文娟 何银年 +1 位作者 王学敏 霍米会 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期960-972,共13页
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ... In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme. 展开更多
关键词 Multiscale finite element method two-level method error analysis the Navier- Stokes problem
在线阅读 下载PDF
Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method 被引量:3
18
作者 王艳 谢英才 +1 位作者 张淑仪 兰晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期468-473,共6页
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ... Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates. 展开更多
关键词 surface acoustic wave ZnO films electromechanical coupling coefficient temperature coefficientof frequency 3D finite element method
在线阅读 下载PDF
Finger capacitance of a terahertz photomixer in low-temperature-grown GaAs using the finite element method 被引量:2
19
作者 陈龙超 范文慧 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期232-238,共7页
Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacita... Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm × 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization. 展开更多
关键词 terahertz photomixer CONTINUOUS-WAVE interditated finger capacitance finite element method
在线阅读 下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
20
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部