期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合注意力互斥正则的细粒度图像分类
被引量:
1
1
作者
陆靖桥
宾炜
+3 位作者
卢永锵
麦广柱
陈银
伍雁雄
《计算机应用》
CSCD
北大核心
2023年第S01期224-228,共5页
细粒度图像分类(FGVC)具有类间差异小、类内差异大等特点,提升该任务效果的关键在于识别目标的判别性部位。目前基于注意力机制的方法一般会识别一个或者两个判别性部位,效果不佳。为此,提出一种注意力互斥正则机制的细粒度模型(AMEM),...
细粒度图像分类(FGVC)具有类间差异小、类内差异大等特点,提升该任务效果的关键在于识别目标的判别性部位。目前基于注意力机制的方法一般会识别一个或者两个判别性部位,效果不佳。为此,提出一种注意力互斥正则机制的细粒度模型(AMEM),通过限制注意力图的不同通道关注不同目标部位,引导模型关注目标的多个判别性部位。在CUB-200-2011、FGVC-Aircraft、Stanford Cars和Stanford Dogs等4个公开数据集上进行评测,实验表明AMEM取得了90.5%、94.3%、95.5%和93.2%的准确率,效果优于对比实验中的其他细粒度模型;此外热力图显示可以识别出指定数目的判别性部位。AMEM在提升预测性能的同时,也能提供一定程度的预测可解释性。
展开更多
关键词
细粒度图像分类
注意力机制
互斥正则
深度学习
在线阅读
下载PDF
职称材料
题名
结合注意力互斥正则的细粒度图像分类
被引量:
1
1
作者
陆靖桥
宾炜
卢永锵
麦广柱
陈银
伍雁雄
机构
广东省新黄埔中医药联合创新研究院健康检测技术装备研究中心
广州中医药大学第二附属医院
季华实验室
出处
《计算机应用》
CSCD
北大核心
2023年第S01期224-228,共5页
基金
广东省重点领域研发计划项目(2020B1111120004)
广东省科技计划项目(X190311UZ190)
文摘
细粒度图像分类(FGVC)具有类间差异小、类内差异大等特点,提升该任务效果的关键在于识别目标的判别性部位。目前基于注意力机制的方法一般会识别一个或者两个判别性部位,效果不佳。为此,提出一种注意力互斥正则机制的细粒度模型(AMEM),通过限制注意力图的不同通道关注不同目标部位,引导模型关注目标的多个判别性部位。在CUB-200-2011、FGVC-Aircraft、Stanford Cars和Stanford Dogs等4个公开数据集上进行评测,实验表明AMEM取得了90.5%、94.3%、95.5%和93.2%的准确率,效果优于对比实验中的其他细粒度模型;此外热力图显示可以识别出指定数目的判别性部位。AMEM在提升预测性能的同时,也能提供一定程度的预测可解释性。
关键词
细粒度图像分类
注意力机制
互斥正则
深度学习
Keywords
fine-grained
visual
classification
(
fgvc
)
attention mechanism
mutual exclusion regularization
deep learning
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合注意力互斥正则的细粒度图像分类
陆靖桥
宾炜
卢永锵
麦广柱
陈银
伍雁雄
《计算机应用》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部