The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving t...The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view ...The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view of these problems,a modified polynomial Radon-polynomial Fourier transform(MPRPFT)hypersonic target coherent integration detection algorithm based on Doppler feedback is proposed in this paper.Firstly,the Doppler estimation value of the target is obtained by using the target point information obtained by subsequent non-coherent integration detection.Then,the feedback adjustment of the coherent integration process is performed by using the acquired target Doppler estimation value.Finally,the coherent integration is completed after adjusting the search interval of compensation.The simulation results show that the algorithm can effectively reduce the computational complexity and improve the real-time performance on the basis of the effective coherent integration of hypersonic target echo signals.展开更多
Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this...Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.展开更多
In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedbac...In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.展开更多
Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader us...Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.展开更多
The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtain...The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular ...To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this pap...A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this paper is to design a control system to fulfill two requirements in this process:the turretbarrel system of tank needs to be adjusted from off-target position to command position and point to the moving target stably when there are strong uncertainties(modeling error,uncertain disturbance with unknown boundaries and road excitation) in the system.Considering the characteristic of coupled interaction,the first thing we do in this paper is to build a coupled analysis model of turret-barrel system with uncertainty term in state-space form.Second,an adaptive robust feedback control scheme is proposed by adding adaptive law to overcome the uncertainty.Third,multi-body dynamics software is used to establish the mechanical mechanism of the tank,and DC-motor module is established in SIMULINK environment,thus the target information and tracking error of the control system is collected and transferred,the gear-ball screw is derived directly by the output torque of the DC-motor module.Finally,the control system and the 3D model are combined together by means of Recur Dyn/SIMULINK co-simulation,the turret-barrel system of tank can approximately track the moving target in a certain range.With the adaptive robust feedback control,the target action is completely followed when the target location is constantly changing.展开更多
The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback ...The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback identification is proposed, which has such advantages as simple parameter adjustment, little dependence on process model, strong robustness and easiness to implementation. And it is very suitable for controlling such processes as BW loop with large time delay.展开更多
A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the ...A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.展开更多
The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.
基金supported by the National Natural Science Foundation of China (60574088 60874053)
文摘The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China(6173102361701519+1 种基金61671462)the Distinguished Taishan Scholars in Climbing Plan
文摘The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view of these problems,a modified polynomial Radon-polynomial Fourier transform(MPRPFT)hypersonic target coherent integration detection algorithm based on Doppler feedback is proposed in this paper.Firstly,the Doppler estimation value of the target is obtained by using the target point information obtained by subsequent non-coherent integration detection.Then,the feedback adjustment of the coherent integration process is performed by using the acquired target Doppler estimation value.Finally,the coherent integration is completed after adjusting the search interval of compensation.The simulation results show that the algorithm can effectively reduce the computational complexity and improve the real-time performance on the basis of the effective coherent integration of hypersonic target echo signals.
文摘Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金supported by the National Natural Science Foundation of China (61073183)the Natural Science Foundation for the Youth of Heilongjiang Province (QC2012C070)
文摘In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.
基金supported by the National Natural Science Foundation of China(60574088).
文摘Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.
基金the National Natural Science Foundation of China (60574083)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (SRF for ROCS),State Education Ministry of China.
文摘The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金Project(70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of ChinaProject supported by the Innovation Foundation of BUAA for PhD Graduates
文摘To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金supported by the Natural Science Foundation of Jiangsu Province(Project no.BK20180474)the Natural Science Foundation of China(Project no.51805263,no.51705253,no.11572158)the National Defense Basic Scientific Research program of China(Grant no.JCKY2017208A001)。
文摘A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this paper is to design a control system to fulfill two requirements in this process:the turretbarrel system of tank needs to be adjusted from off-target position to command position and point to the moving target stably when there are strong uncertainties(modeling error,uncertain disturbance with unknown boundaries and road excitation) in the system.Considering the characteristic of coupled interaction,the first thing we do in this paper is to build a coupled analysis model of turret-barrel system with uncertainty term in state-space form.Second,an adaptive robust feedback control scheme is proposed by adding adaptive law to overcome the uncertainty.Third,multi-body dynamics software is used to establish the mechanical mechanism of the tank,and DC-motor module is established in SIMULINK environment,thus the target information and tracking error of the control system is collected and transferred,the gear-ball screw is derived directly by the output torque of the DC-motor module.Finally,the control system and the 3D model are combined together by means of Recur Dyn/SIMULINK co-simulation,the turret-barrel system of tank can approximately track the moving target in a certain range.With the adaptive robust feedback control,the target action is completely followed when the target location is constantly changing.
基金This project was supported by the National Key Project in the Ninth Fivc-Year Plan(97-619-02-03).
文摘The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback identification is proposed, which has such advantages as simple parameter adjustment, little dependence on process model, strong robustness and easiness to implementation. And it is very suitable for controlling such processes as BW loop with large time delay.
基金Project(2010-0020163)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.