为了解决联邦学习在车联网中终端设备数据的异质性导致模型训练准确率不稳定和性能下降,以及车辆分布广泛,通信和计算资源有限的问题,提出一种数据类型和数据规模并行优化的群联邦迁移学习数据共享方法(swarm federated transfer learni...为了解决联邦学习在车联网中终端设备数据的异质性导致模型训练准确率不稳定和性能下降,以及车辆分布广泛,通信和计算资源有限的问题,提出一种数据类型和数据规模并行优化的群联邦迁移学习数据共享方法(swarm federated transfer learning,SFTL)。提出基于高斯混合模型的共识设备组划分机制,通过对数据分布建模构建共识设备组,实现对异质性数据的有效管理和分析;面向划分的共识设备组,设计蜂群学习训练机制,加强相似设备组之间的协同学习过程;提出组间迁移学习机制,通过模型预训练法增量迁移不同共识设备组信息最小化模型差异,提高联邦模型聚合准确率。在公共数据集上的实验表明:与基线方法相比,SFTL模型训练准确率平均提高7%,通信时间平均降低10%。展开更多
为了解决滚动轴承故障诊断中样本分布差异大、有效故障样本少以及不同故障样本数量不均衡所导致的诊断精度较低的问题;提出基于个性化联邦迁移学习(personalized federated transfer learning,PFTL)的滚动轴承故障诊断方法。在所提出的P...为了解决滚动轴承故障诊断中样本分布差异大、有效故障样本少以及不同故障样本数量不均衡所导致的诊断精度较低的问题;提出基于个性化联邦迁移学习(personalized federated transfer learning,PFTL)的滚动轴承故障诊断方法。在所提出的PFTL中,首先在预训练阶段,将不同分布的各类型故障样本作为联邦学习的各个客户端的输入,并引入贝叶斯层级模型对联邦学习的本地训练和聚合规则进行个性化调整,从而使得预训练模型在避免过拟合问题的同时具有较强的泛化能力;其次引入模型补丁,对预训练模型结构进行调整,并利用目标任务样本对模型进一步微调;最后在CWRU轴承数据集上进行故障诊断实验。实验结果证明所提方法的有效性。展开更多
第107届北美放射学会(Radiological Society of North America,RSNA)年会人工智能亮点聚焦于:(1)新技术新算法:联邦学习破解数据孤岛难题,迁移学习应用于多中心数据;(2)真实年龄新概念:“影像-生理年龄”;(3) AI赋能影像,从实验室走向...第107届北美放射学会(Radiological Society of North America,RSNA)年会人工智能亮点聚焦于:(1)新技术新算法:联邦学习破解数据孤岛难题,迁移学习应用于多中心数据;(2)真实年龄新概念:“影像-生理年龄”;(3) AI赋能影像,从实验室走向临床应用,包括早期诊断、风险评估、预后预测、临床决策辅助、自动化智能测量等;(4) AI应用的挑战:数据“黑盒”、模型适用性,数据管理及法律责任等。结合近年文献,本文对2021 RSNA年会AI研究进行概述。展开更多
文摘为了解决联邦学习在车联网中终端设备数据的异质性导致模型训练准确率不稳定和性能下降,以及车辆分布广泛,通信和计算资源有限的问题,提出一种数据类型和数据规模并行优化的群联邦迁移学习数据共享方法(swarm federated transfer learning,SFTL)。提出基于高斯混合模型的共识设备组划分机制,通过对数据分布建模构建共识设备组,实现对异质性数据的有效管理和分析;面向划分的共识设备组,设计蜂群学习训练机制,加强相似设备组之间的协同学习过程;提出组间迁移学习机制,通过模型预训练法增量迁移不同共识设备组信息最小化模型差异,提高联邦模型聚合准确率。在公共数据集上的实验表明:与基线方法相比,SFTL模型训练准确率平均提高7%,通信时间平均降低10%。
文摘为了解决滚动轴承故障诊断中样本分布差异大、有效故障样本少以及不同故障样本数量不均衡所导致的诊断精度较低的问题;提出基于个性化联邦迁移学习(personalized federated transfer learning,PFTL)的滚动轴承故障诊断方法。在所提出的PFTL中,首先在预训练阶段,将不同分布的各类型故障样本作为联邦学习的各个客户端的输入,并引入贝叶斯层级模型对联邦学习的本地训练和聚合规则进行个性化调整,从而使得预训练模型在避免过拟合问题的同时具有较强的泛化能力;其次引入模型补丁,对预训练模型结构进行调整,并利用目标任务样本对模型进一步微调;最后在CWRU轴承数据集上进行故障诊断实验。实验结果证明所提方法的有效性。
文摘第107届北美放射学会(Radiological Society of North America,RSNA)年会人工智能亮点聚焦于:(1)新技术新算法:联邦学习破解数据孤岛难题,迁移学习应用于多中心数据;(2)真实年龄新概念:“影像-生理年龄”;(3) AI赋能影像,从实验室走向临床应用,包括早期诊断、风险评估、预后预测、临床决策辅助、自动化智能测量等;(4) AI应用的挑战:数据“黑盒”、模型适用性,数据管理及法律责任等。结合近年文献,本文对2021 RSNA年会AI研究进行概述。