期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于IcD-FDRL的应急监控视频边缘智能传输优化
1
作者 李彦 万征 +1 位作者 邓承志 汪胜前 《北京航空航天大学学报》 北大核心 2025年第7期2314-2329,共16页
应急监控视频传输作为提升突发事件监测、公共安全事件处理、灾后重建等情况下应急工作处理能力的关键技术手段,逐渐成为国家智慧应急体系建设重点支持的专业领域和研究方向。随着5G技术、决策型人工智能技术的不断发展,为实现自适应的... 应急监控视频传输作为提升突发事件监测、公共安全事件处理、灾后重建等情况下应急工作处理能力的关键技术手段,逐渐成为国家智慧应急体系建设重点支持的专业领域和研究方向。随着5G技术、决策型人工智能技术的不断发展,为实现自适应的高质量应急监控视频传输,针对局部区域内公共安全和应急救援监控,建立一种应急监控视频边缘智能传输架构,设计了应急监控视频重要性度量方法,提出簇内动态联邦深度强化学习(IcD-FDRL)算法,并实现了基于簇内动态联邦深度强化学习的应急监控视频边缘智能传输优化,以打破监控数据孤岛,提升算法学习效率,实现重要应急监控视频的低时延、低成本、高质量和优先传输。通过仿真实验进行了对比分析,验证了所提模型和算法的有效性。 展开更多
关键词 应急监控视频 边缘集群 动态联邦深度强化学习 边缘智能 无线视频传输 移动边缘计算
在线阅读 下载PDF
面向低轨卫星通信网络的联邦深度强化学习智能路由方法
2
作者 李学华 廖海龙 +1 位作者 张贤 周家恩 《电子与信息学报》 北大核心 2025年第8期2652-2664,共13页
低轨卫星通信网络拓扑结构动态变化,传统地面网络路由方法难以直接适用,同时由于卫星星载资源受限,基于人工智能的路由方法通常学习效率较低,而协同训练需要数据共享和传输,难度大且存在数据安全风险。为此,针对上述挑战,该文提出一种... 低轨卫星通信网络拓扑结构动态变化,传统地面网络路由方法难以直接适用,同时由于卫星星载资源受限,基于人工智能的路由方法通常学习效率较低,而协同训练需要数据共享和传输,难度大且存在数据安全风险。为此,针对上述挑战,该文提出一种基于卫星分簇的多智能体联邦深度强化学习路由方法。首先,设计了结合网络拓扑、通信和能耗的低轨卫星通信网络路由模型;然后,基于每颗卫星的平均连接度将星座节点划分为多个簇,在簇内采用联邦深度强化学习框架,通过簇内卫星协同共享模型参数,共同训练对应簇内的全局模型,以最大化网络能量效率。最后,仿真结果表明,该文所设计方法对比Sarsa、MAD2QN和REINFORCE 3种基准方法,网络平均吞吐量分别提高83.7%,19.8%和14.1%;数据包平均跳数分别减少25.0%,18.9%和9.1%;网络能量效率分别提升55.6%,42.9%和45.8%。 展开更多
关键词 低轨卫星通信 路由方法 卫星分簇 联邦深度强化学习 能量效率
在线阅读 下载PDF
边缘辅助的自适应稀疏联邦学习优化算法 被引量:1
3
作者 陈晓 仇洪冰 李燕龙 《电子与信息学报》 北大核心 2025年第3期645-656,共12页
联邦学习中,高模型贡献率的无线网络设备通常由于算力不足、能量有限成为掉队者,进而增加模型聚合时延并影响全局模型精度。针对此问题,该文设计了联合边缘服务器辅助训练和模型自适应稀疏联邦学习架构,并提出了基于边缘辅助训练的自适... 联邦学习中,高模型贡献率的无线网络设备通常由于算力不足、能量有限成为掉队者,进而增加模型聚合时延并影响全局模型精度。针对此问题,该文设计了联合边缘服务器辅助训练和模型自适应稀疏联邦学习架构,并提出了基于边缘辅助训练的自适应稀疏联邦学习优化算法。首先,引入边缘服务器为算力不足或能量受限的设备提供辅助训练。构建了辅助训练和通信、计算资源分配的优化模型,并采用多种深度强化学习方法求解优化的辅助训练决策。其次,基于辅助训练决策,在每个通信轮次自适应地对全局模型进行非结构化剪枝,进一步降低设备的时延和能耗开销。实验结果表明,所提算法极大地减少了掉队设备,其模型测试精度优于经典联邦学习的测试精度;利用深度确定性策略梯度(DDPG)优化辅助资源分配的算法有效地减少了系统训练时延,提升了模型训练效率。 展开更多
关键词 联邦学习 边缘服务器 自适应稀疏 深度强化学习 非结构化剪枝
在线阅读 下载PDF
异构边缘环境下自适应分层联邦学习协同优化方法
4
作者 冯奕铭 钱珍 +1 位作者 李光辉 代成龙 《计算机研究与发展》 北大核心 2025年第6期1416-1433,共18页
传统联邦学习在应用中面临设备异构、数据异构、通信资源约束等挑战.终端设备异构导致训练过程中过低的协作效率,而数据异构所包括的数据量和数据特征分布异构则导致全局模型精度损失以及模型缺少泛化性.为了有效利用终端的计算、通信... 传统联邦学习在应用中面临设备异构、数据异构、通信资源约束等挑战.终端设备异构导致训练过程中过低的协作效率,而数据异构所包括的数据量和数据特征分布异构则导致全局模型精度损失以及模型缺少泛化性.为了有效利用终端的计算、通信以及数据资源,提出了一种自适应优化的分层联邦学习方法.该方法在考虑设备硬件资源约束、通信资源约束以及数据非独立同分布(Non-IID)特性下,结合模型分割和客户端选择技术加速联邦学习训练,提高模型准确率以及其在不同异构环境下的适应性.为了反映各客户端数据对全局模型的一致性影响,引入数据贡献度以度量本地模型对全局模型的影响.通过深度强化学习方法,在每一轮训练前智能体根据系统的资源分布以及本地数据贡献度来学习如何选择合理的训练客户端集合及相应边端协同模型划分方案,以加速本地训练及全局模型收敛.仿真结果表明,与基线方法相比,所提算法在模型准确率与训练效率2个方面均表现出显著优势,且在不同异构环境配置下显示出良好的鲁棒性及适应性. 展开更多
关键词 分层联邦学习 异构边缘计算 模型分割 客户端选择 深度强化学习
在线阅读 下载PDF
数字孪生辅助联邦学习中的边缘选择和资源分配联合优化 被引量:2
5
作者 唐伦 文明艳 +1 位作者 单贞贞 陈前斌 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1343-1352,共10页
在基于联邦学习的智能驾驶中,智能网联汽车(ICV)的资源限制和可能出现的设备故障会导致联邦学习训练精度下降、时延和能耗增加等问题。为此该文提出数字孪生辅助联邦学习中的边缘选择和资源分配优化方案。该方案首先提出数字孪生辅助联... 在基于联邦学习的智能驾驶中,智能网联汽车(ICV)的资源限制和可能出现的设备故障会导致联邦学习训练精度下降、时延和能耗增加等问题。为此该文提出数字孪生辅助联邦学习中的边缘选择和资源分配优化方案。该方案首先提出数字孪生辅助联邦学习机制,使得ICV能够选择在本地或利用其数字孪生体参与联邦学习。其次,通过构建数字孪生辅助联邦学习的计算和通信模型,建立以最小化累积训练时延和能耗为目标的边缘选择和资源分配联合优化问题,并将其转化为部分可观测的马尔可夫决策过程。最后,提出基于多智能体参数化Q网络(MPDQN)的边缘选择和资源分配算法,用于学习近似最优的边缘选择和资源分配策略,以实现联邦学习累积时延和能耗最小化。仿真结果表明,所提算法在保证模型精度的同时,有效降低联邦学习累积训练时延和能耗。 展开更多
关键词 智能驾驶 联邦学习 数字孪生 深度强化学习
在线阅读 下载PDF
双因子更新的车联网双层异步联邦学习研究
6
作者 王力立 吴守林 +1 位作者 杨妮 黄成 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2842-2849,共8页
针对车联网(IoV)中节点资源异构、拓扑结构动态变化等特点,该文建立了一个双因子更新的双层异步联邦学习(TTAFL)框架。考虑到模型版本差和车辆参与联邦学习(FL)次数对局部模型更新的影响,提出基于陈旧因子和贡献因子的模型更新方案。同... 针对车联网(IoV)中节点资源异构、拓扑结构动态变化等特点,该文建立了一个双因子更新的双层异步联邦学习(TTAFL)框架。考虑到模型版本差和车辆参与联邦学习(FL)次数对局部模型更新的影响,提出基于陈旧因子和贡献因子的模型更新方案。同时,为了避免训练过程中,车辆移动带来路侧单元切换的问题,给出考虑驻留时间的节点选择方案。最后,为了减少精度损失与系统能耗,利用强化学习方法优化联邦学习的本地迭代次数与路侧单元局部模型更新次数。仿真结果表明,所提算法有效提高了联邦学习的训练效率和训练精度,降低了系统能耗。 展开更多
关键词 车联网 联邦学习 异步训练 深度强化学习
在线阅读 下载PDF
面向深度强化学习的鲁棒性增强方法 被引量:1
7
作者 葛杰 郑海斌 陈晋音 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1552-1560,共9页
深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习的感知能力和强化学习的决策能力,被应用于许多领域.然而,一旦攻击者窃取了DRL数据,就能干扰状态、奖励及动作或环境,从而影响智能体的决策.且已有研究表明DRL模型极易受... 深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习的感知能力和强化学习的决策能力,被应用于许多领域.然而,一旦攻击者窃取了DRL数据,就能干扰状态、奖励及动作或环境,从而影响智能体的决策.且已有研究表明DRL模型极易受到恶意攻击,攻击者根据状态及动作空间信息,训练等价模型实现黑盒攻击.为了实现DRL数据隐私保护及模型鲁棒性增强,本文提出一种基于垂直联邦的DRL模型(Vertical Federated based DRL,VF-DRL).VF-DRL搭建多个客户端并保证数据特征不重叠.同时服务器端上传各个客户端输出的隐层特征以保证数据隐私.进一步,本文对比不同基线算法,通过大量实验评估了VF-DRL模型的性能.假设存在一个恶意客户端执行对抗攻击的情况下,使用多种对抗攻击方法验证了VF-DRL模型的鲁棒性.同时在高维及较低维环境中验证VF-DRL模型的鲁棒性,并进一步分析影响其鲁棒性的因素. 展开更多
关键词 深度强化学习 垂直联邦学习 隐私保护 对抗攻击 鲁棒性增强
在线阅读 下载PDF
基于深度强化学习的边缘计算资源分配方法 被引量:1
8
作者 谢陶 黄迎春 《火力与指挥控制》 CSCD 北大核心 2024年第9期185-190,共6页
边缘计算的特点使其具有广阔的军事应用前景。在边缘计算中引入联邦学习(federated learning,FL),考虑到物联网设备的资源有限,需要兼顾FL精度和设备能耗。提出了结合深度强化学习、联邦学习及自注意力机制的框架(DRL-FLSL)来实现选择... 边缘计算的特点使其具有广阔的军事应用前景。在边缘计算中引入联邦学习(federated learning,FL),考虑到物联网设备的资源有限,需要兼顾FL精度和设备能耗。提出了结合深度强化学习、联邦学习及自注意力机制的框架(DRL-FLSL)来实现选择设备并为其分配资源,目标是平衡FL精度和设备的能耗。该框架引入LSTM(long short term memory)预测网络状态,并添加多头自注意力机制实现更精准的信息提取。仿真实验结果表明,DRL-FLSL具有较好的训练效果,能够有效平衡FL精度和设备能耗。 展开更多
关键词 深度强化学习 边缘计算 联邦学习 资源分配
在线阅读 下载PDF
针对差异化设备的任务卸载方法
9
作者 余楚佳 胡晟熙 +2 位作者 林欣郁 陈哲毅 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1816-1824,共9页
在边缘计算中,为缓解移动设备计算能力、存储容量受限问题,通常将部分计算密集型任务卸载至边缘服务器.然而,由于移动设备计算能力的差异,无法为所有的移动设备制定统一的卸载方案.若对每个设备均单独进行训练,则无法满足时延需求.针对... 在边缘计算中,为缓解移动设备计算能力、存储容量受限问题,通常将部分计算密集型任务卸载至边缘服务器.然而,由于移动设备计算能力的差异,无法为所有的移动设备制定统一的卸载方案.若对每个设备均单独进行训练,则无法满足时延需求.针对这一问题,本文提出了一种差异化设备上基于联邦深度强化学习的任务卸载方法.该方法使用环境内已有移动设备的卸载经验,结合深度Q网络和联邦学习框架,构建了一个全局模型.随后,使用新移动设备上少量经验在全局模型上微调以构建个人模型.基于多种场景的大量实验,将本文所提出方法与理想方案、Naive、全局模型和Rule-based算法进行对比.实验结果验证了本文所提出方法针对差异化设备任务卸载问题的有效性,能在花费较短时延的同时得到接近理想方案的卸载方案. 展开更多
关键词 边缘计算 任务卸载 依赖感知 深度强化学习 联邦学习
在线阅读 下载PDF
基于联邦共识机制的多视频流带宽分配策略 被引量:3
10
作者 张春阳 杨志刚 +1 位作者 刘亚志 李伟 《计算机应用研究》 CSCD 北大核心 2024年第4期1150-1158,共9页
针对瓶颈链路中视频带宽分配不均导致的用户QoE不公平以及带宽利用率低的问题,提出了一种基于联邦深度强化学习的分布式视频流公平调度策略。该策略能够根据客户端网络状态和视频QoE等级动态生成带宽分配权重因子,服务器端的拥塞控制算... 针对瓶颈链路中视频带宽分配不均导致的用户QoE不公平以及带宽利用率低的问题,提出了一种基于联邦深度强化学习的分布式视频流公平调度策略。该策略能够根据客户端网络状态和视频QoE等级动态生成带宽分配权重因子,服务器端的拥塞控制算法则根据带宽分配权重因子为瓶颈链路中的每个视频流分配带宽,以保障瓶颈链路中视频流的公平传输。每个视频终端都运行一个带宽分配agent,且多个agent以联邦学习的方式周期性地训练,以便代理模型能够快速收敛。带宽分配agent通过共识机制同步联邦训练参数,实现了在异步播放请求条件下带宽分配agent模型参数的分布式聚合,并确保了agent模型参数的安全共享。实验结果表明,与最新方案相比,提出策略在QoE公平性和整体QoE效率方面分别提高了10%和7%,这表明提出策略在解决视频流带宽分配不均问题和提升用户体验方面具有潜力和有效性。 展开更多
关键词 QoE公平性 视频质量 深度强化学习 联邦学习 区块链
在线阅读 下载PDF
一种采用联邦深度强化学习的车联网资源分配方法 被引量:1
11
作者 王辛果 王昶 《电讯技术》 北大核心 2024年第7期1065-1071,共7页
在车联网中,为了充分利用可用资源,车到车(Vehicle to Vehicle,V2V)链路需要动态地复用固定分配给车到基础设施(Vehicle to Infrastructure,V2I)链路的信道。传统的集中式信道资源分配方法会产生较大的通信开销,也难以适应转瞬即逝的车... 在车联网中,为了充分利用可用资源,车到车(Vehicle to Vehicle,V2V)链路需要动态地复用固定分配给车到基础设施(Vehicle to Infrastructure,V2I)链路的信道。传统的集中式信道资源分配方法会产生较大的通信开销,也难以适应转瞬即逝的车辆环境。为此,提出了一种基于分布式联邦深度强化学习(Federated Deep Reinforcement Learning,FDRL)的信道资源分配方法。首先,所有V2V智能体基于局部观察的环境信息独立地训练自己的模型,但彼此间保持相同的奖励以激励它们相互协作进而达成全局最优方案;然后,这些V2V智能体通过基站的帮助聚合部分模型参数,以增加接入公平性并加快模型学习效率。通过上述两阶段的迭代训练,每个V2V智能体训练出独特的决斗深度神经网络信道接入决策模型。仿真结果表明,所提出的FDRL方法与现有的优化方法相比具有更高的V2I链路总容量和V2V链路传输成功率。 展开更多
关键词 车联网通信 信道资源分配 联邦学习 深度强化学习
在线阅读 下载PDF
基于数据质量评估的高效强化联邦学习节点动态采样优化
12
作者 赵泽华 梁美玉 +2 位作者 薛哲 李昂 张珉 《智能系统学报》 CSCD 北大核心 2024年第6期1552-1561,共10页
系统异构性和统计异构性的存在使得通信开销和通信效率成为联邦学习的关键瓶颈之一,在众多参与方中只选取一部分客户端执行模型更新和聚合可以有效降低通信开销,但是选择偏差和客户端上的数据质量分布不平衡对客户端采样方法提出了额外... 系统异构性和统计异构性的存在使得通信开销和通信效率成为联邦学习的关键瓶颈之一,在众多参与方中只选取一部分客户端执行模型更新和聚合可以有效降低通信开销,但是选择偏差和客户端上的数据质量分布不平衡对客户端采样方法提出了额外的挑战。为此,提出数据质量评估的高效强化联邦学习节点动态采样优化方法(client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment,RQCS),该方法采用沙普利值的贡献指数评估客户端上的数据质量,基于深度强化学习模型,智能的动态选择具有高数据质量且能提高最终模型精度的客户端参与每一轮的联邦学习,以抵消数据质量分布不平衡引入的偏差,加速模型收敛并提高模型精度。在MNIST及CIFAR-10数据集上的实验表明,所提出算法与其他算法相比,在减少通信开销的同时进一步加快了收敛速度,同时在模型最终准确性上也有较好的性能。 展开更多
关键词 联邦学习 深度强化学习 客户端动态采样 贡献指数 数据质量 通信效率 沙普利值 模型精度
在线阅读 下载PDF
GenFedRL:面向深度强化学习智能体的通用联邦强化学习框架 被引量:2
13
作者 金彪 李逸康 +2 位作者 姚志强 陈瑜霖 熊金波 《通信学报》 EI CSCD 北大核心 2023年第6期183-197,共15页
针对智能物联网中,搭载深度强化学习智能体的智能设备缺乏有效安全数据共享机制的问题,提出一种面向深度强化学习智能体的通用联邦强化学习(GenFedRL)框架。GenFedRL不需要共享深度强化学习智能体的本地私有数据,而通过模型共享技术实... 针对智能物联网中,搭载深度强化学习智能体的智能设备缺乏有效安全数据共享机制的问题,提出一种面向深度强化学习智能体的通用联邦强化学习(GenFedRL)框架。GenFedRL不需要共享深度强化学习智能体的本地私有数据,而通过模型共享技术实现共同训练,在保护各智能体私有数据隐私的同时,有效地利用其数据资源和计算资源。为应对现实通信环境的复杂性与满足加速训练的需要,为GenFedRL设计了基于同步并行的模型共享机制。结合常见深度强化学习算法自身的模型结构特点,基于FedAvg算法设计了适用于单网络结构与多网络结构的通用联邦强化学习算法,进而实现了具有同种网络结构的智能体间的模型共享机制,更好地保护各类智能体的私有数据。仿真实验表明,即使在大部分数据节点无法参与训练的恶劣通信环境下,常见深度强化学习算法智能体在所提框架上仍表现出良好的性能。 展开更多
关键词 智能物联网 联邦学习 联邦强化学习 深度强化学习
在线阅读 下载PDF
基于DRL的联邦学习节点选择方法 被引量:14
14
作者 贺文晨 郭少勇 +2 位作者 邱雪松 陈连栋 张素香 《通信学报》 EI CSCD 北大核心 2021年第6期62-71,共10页
为了应对设备差异化计算能力及非独立同分布数据对联邦学习性能的影响,高效地调度终端设备完成模型聚合,提出了一种基于深度强化学习的设备节点选择方法。该方法考虑异构节点的训练质量和效率,筛选恶意节点,在提升联邦学习模型准确率的... 为了应对设备差异化计算能力及非独立同分布数据对联邦学习性能的影响,高效地调度终端设备完成模型聚合,提出了一种基于深度强化学习的设备节点选择方法。该方法考虑异构节点的训练质量和效率,筛选恶意节点,在提升联邦学习模型准确率的同时,优化训练时延。首先,根据联邦学习中模型分布式训练的特点,构建基于深度强化学习的节点选择系统模型。其次,考虑设备训练时延、模型传输时延和准确率等因素,提出面向节点选择的准确率最优化问题模型。然后,将问题模型构建为马尔可夫决策过程,并设计基于分布式近端策略优化的节点选择算法,在每次训练迭代前选择合理的设备集合完成模型聚合。仿真实验表明,所提方法显著提高了联邦学习的准确率和训练速度,且具有良好的收敛性和稳健性。 展开更多
关键词 联邦学习 模型聚合 节点选择 深度强化学习 准确率
在线阅读 下载PDF
基于联邦深度强化学习的车联网资源分配 被引量:5
15
作者 王晓昌 吴璠 +1 位作者 孙彦赞 吴雅婷 《电子测量技术》 北大核心 2021年第10期114-120,共7页
车辆通信(V2X)能够有效地提高交通安全性和移动性,是车辆部署场景中的关键技术之一。V2X通信链路需要满足不同应用的服务质量(QoS)要求,如车对车(V2V)链路的延迟和可靠性要求。面向车辆高速移动性导致的无线信道快速变化,为保证不同车... 车辆通信(V2X)能够有效地提高交通安全性和移动性,是车辆部署场景中的关键技术之一。V2X通信链路需要满足不同应用的服务质量(QoS)要求,如车对车(V2V)链路的延迟和可靠性要求。面向车辆高速移动性导致的无线信道快速变化,为保证不同车辆链路的QoS约束和车辆动态网络的鲁棒性,提出一种基于联邦深度强化学习(FDRL)的频谱分配和功率控制联合优化框架。框架首先根据不同车辆链路需求提出了对应的优化问题,并定义了强化学习的状态空间、动作空间和奖励函数;然后介绍了联邦深度强化学习的训练框架;最后,通过分布式的车辆端强化学习和基站聚合平均训练,找到最佳的频谱分配和功率控制策略。仿真结果表明,与其他对比算法相比,所提出算法能够提高车对基站(V2I)的总用户信道容量,并保证了新加入车辆时动态网络的鲁棒性。 展开更多
关键词 车辆通信 深度强化学习 资源分配 联邦学习
在线阅读 下载PDF
数据新鲜度驱动的协作式无人机联邦学习智能决策优化研究 被引量:3
16
作者 范文 韦茜 +2 位作者 周知 于帅 陈旭 《电子与信息学报》 EI CSCD 北大核心 2022年第9期2994-3003,共10页
联邦学习是6G关键技术之一,其可以在保护数据隐私的前提下,利用跨设备的数据训练一个可用且安全的共享模型。然而,大部分终端设备由于处理能力有限,无法支持复杂的机器学习模型训练过程。在异构网络融合环境下移动边缘计算(MEC)框架中,... 联邦学习是6G关键技术之一,其可以在保护数据隐私的前提下,利用跨设备的数据训练一个可用且安全的共享模型。然而,大部分终端设备由于处理能力有限,无法支持复杂的机器学习模型训练过程。在异构网络融合环境下移动边缘计算(MEC)框架中,多个无人机(UAVs)作为空中边缘服务器以协作的方式灵活地在目标区域内移动,并且及时收集新鲜数据进行联邦学习本地训练以确保数据学习的实时性。该文综合考虑数据新鲜程度、通信代价和模型质量等多个因素,对无人机飞行轨迹、与终端设备的通信决策以及无人机之间的协同工作方式进行综合优化。进一步,该文使用基于优先级的可分解多智能体深度强化学习算法解决多无人机联邦学习的连续在线决策问题,以实现高效的协作和控制。通过采用多个真实数据集进行仿真实验,仿真结果验证了所提出的算法在不同的数据分布以及快速变化的动态环境下都能取得优越的性能。 展开更多
关键词 移动边缘计算 联邦学习 深度强化学习 无人机 信息年龄
在线阅读 下载PDF
车联网中基于联邦深度强化学习的任务卸载算法 被引量:1
17
作者 林欣郁 姚泽玮 +2 位作者 胡晟熙 陈哲毅 陈星 《计算机科学》 CSCD 北大核心 2023年第9期347-356,共10页
随着车联网应用服务体系日益丰富,计算资源有限的车辆难以处理这些计算密集和时延敏感的车联网应用。计算卸载作为移动边缘计算中的一种关键技术可以解决这一难题。对于车联网中动态的多车辆多路侧单元的任务卸载环境,提出了一种基于联... 随着车联网应用服务体系日益丰富,计算资源有限的车辆难以处理这些计算密集和时延敏感的车联网应用。计算卸载作为移动边缘计算中的一种关键技术可以解决这一难题。对于车联网中动态的多车辆多路侧单元的任务卸载环境,提出了一种基于联邦深度强化学习的任务卸载算法。该算法将每辆车都看作是智能体,采用联邦学习的框架训练各智能体,各智能体分布式决策卸载方案,以最小化系统的平均响应时间。设置评估实验,在多种动态变化的场景下对提出的算法的性能进行对比分析。实验结果显示,提出的算法求解出的系统平均响应时间短于基于规则的算法和多智能体深度强化学习算法,接近于理想方案,且求解时间远短于理想方案。实验结果表明,所提算法能够在可接受的算法执行时间内求解出接近于理想方案的系统平均响应时间。 展开更多
关键词 边缘计算 任务卸载 车联网 深度强化学习 联邦学习
在线阅读 下载PDF
智能无线通信技术研究概况 被引量:31
18
作者 梁应敞 谭俊杰 Dusit Niyato 《通信学报》 EI CSCD 北大核心 2020年第7期1-17,共17页
近年来,人工智能技术已被应用于无线通信领域,以解决传统无线通信技术面对信息爆炸和万物互联等新发展趋势所遇到的瓶颈问题。首先介绍深度学习、深度强化学习和联邦学习三类具有代表性的人工智能技术;然后通过对这三类技术在无线通信... 近年来,人工智能技术已被应用于无线通信领域,以解决传统无线通信技术面对信息爆炸和万物互联等新发展趋势所遇到的瓶颈问题。首先介绍深度学习、深度强化学习和联邦学习三类具有代表性的人工智能技术;然后通过对这三类技术在无线通信中的无线传输、频谱管理、资源配置、网络接入、网络及系统优化5个方面的应用进行综述,分析和总结它们在解决无线通信问题时的原理、适用性、设计方法和优缺点;最后围绕存在的局限性指出智能无线通信技术的未来发展趋势和研究方向,期望为无线通信领域的后续研究提供帮助和参考。 展开更多
关键词 人工智能 无线通信 深度学习 深度强化学习 联邦学习
在线阅读 下载PDF
面向隐私保护基于联邦强化学习的分布式电源协同优化策略 被引量:13
19
作者 蒲天骄 杜帅 +1 位作者 李烨 王新迎 《电力系统自动化》 EI CSCD 北大核心 2023年第8期62-70,共9页
针对分布式电源优化调度面临的隐私保护和实时决策问题,提出了基于联邦强化学习的多智能体分布式协同优化策略。首先,构建了基于联邦强化学习的配电网分布式协同优化框架,利用联邦学习避免在多智能体深度强化学习过程中泄露隐私数据。... 针对分布式电源优化调度面临的隐私保护和实时决策问题,提出了基于联邦强化学习的多智能体分布式协同优化策略。首先,构建了基于联邦强化学习的配电网分布式协同优化框架,利用联邦学习避免在多智能体深度强化学习过程中泄露隐私数据。在此框架下,提出了多智能体约束策略优化方法,利用离线训练缩短在线决策时间,支持智能体实时分布式决策。同时,该方法为智能体构建了考虑潮流方程等约束条件的可行域,允许智能体在训练过程中自由探索,提高了收敛速度,并确保实时调度策略满足电力系统安全运行约束。最后,通过算例进行仿真验证,结果表明离线训练时各智能体仅利用局部信息即可实现全局优化,并保证了实时决策和调度策略的安全性。 展开更多
关键词 分布式电源 分布式协同优化 深度强化学习 联邦强化学习 隐私保护
在线阅读 下载PDF
基于联邦学习的无线网络节点能量与信息管理策略 被引量:10
20
作者 杨文琦 章阳 +3 位作者 聂江天 杨和林 康嘉文 熊泽辉 《计算机工程》 CAS CSCD 北大核心 2022年第1期188-196,203,共10页
在无线通信网络环境中,分布式客户端节点在用户隐私保护、数据传输效率、能量利用效率之间较难实现平衡。针对该问题,提出一种结合联邦学习与传统集中式学习的能量与信息管理优化策略。以覆盖性强、适用性广的移动信息采集设备作为学习... 在无线通信网络环境中,分布式客户端节点在用户隐私保护、数据传输效率、能量利用效率之间较难实现平衡。针对该问题,提出一种结合联邦学习与传统集中式学习的能量与信息管理优化策略。以覆盖性强、适用性广的移动信息采集设备作为学习服务器,将分布分散、资源受限的客户端节点作为学习参与者,通过构建马尔科夫决策模型分析客户端节点在移动信息采集过程中的状态变化和行为模式,同时采用值迭代算法和深度强化学习算法对该模型进行近似求解,获得客户端节点最优的信息传输与能量管理组合策略。仿真结果表明,相比MDP、GRE、RAN策略,该策略的长期效用较高且数据延迟较小,可实现客户端节点在信息传输过程中的数据隐私性、数据可用性与能量消耗之间的最优平衡。 展开更多
关键词 联邦学习 无线通信网络 信息传输 能量管理 马尔科夫决策过程 深度强化学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部