期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向Non-IID数据的联邦学习工业仪表定位与分类算法
1
作者 王瑞龙 闫坤 +1 位作者 宁振杰 肖霄 《仪表技术与传感器》 2025年第11期19-24,共6页
针对现有联邦学习算法在各客户端仅有单个类别的Non-IID仪表数据集上训练出的定位与分类模型性能不佳的问题,提出了一种改进的FedProx算法。在客户端本地训练时,使用预训练模型参数与客户端本地训练过程中的模型参数差值的L2范数作为正... 针对现有联邦学习算法在各客户端仅有单个类别的Non-IID仪表数据集上训练出的定位与分类模型性能不佳的问题,提出了一种改进的FedProx算法。在客户端本地训练时,使用预训练模型参数与客户端本地训练过程中的模型参数差值的L2范数作为正则化损失项添加到原始的损失函数中;在服务器端,使用训练出的模型在测试集上的精度作为各客户端参全局模型聚合的权重。实验结果表明:改进的FedProx算法训练出的模型的mAP0.5指标达到0.9720,仅比集中式训练出的模型的0.9994低了0.0274;该算法在各客户端仅有单个类别的Non-IID数据集上训练出的模型的mAP0.5指标为0.9392,比FedAvg和FedProx算法分别高出了0.0785和0.1289。实验结果充分证明了改进的FedProx算法的准确性和有效性。 展开更多
关键词 联邦学习 工业仪表 定位与分类 Non-IID数据 FedAvg fedprox
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部