期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于PCA和禁忌搜索的网络流量特征选择算法 被引量:5
1
作者 冶晓隆 兰巨龙 郭通 《计算机科学》 CSCD 北大核心 2014年第1期187-191,共5页
针对网络流量特征属性选择的寻优和效率问题,提出了一种PCA结合禁忌搜索的网络流量特征选择方法。该方法通过PCA对高维特征属性空间进行特征约减,并利用禁忌搜索得到全局最优特征子集。实验证明,相比流行的遗传算法(GA)和粒子群寻优算法... 针对网络流量特征属性选择的寻优和效率问题,提出了一种PCA结合禁忌搜索的网络流量特征选择方法。该方法通过PCA对高维特征属性空间进行特征约减,并利用禁忌搜索得到全局最优特征子集。实验证明,相比流行的遗传算法(GA)和粒子群寻优算法(PSO-SVM),PCA和禁忌搜索方法具有更好的处理效率和特征选择精度。 展开更多
关键词 特征约减 特征选择 主成分分析 禁忌搜索
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
2
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于主成分分析禁忌搜索和决策树分类的异常流量检测方法 被引量:11
3
作者 冶晓隆 兰巨龙 郭通 《计算机应用》 CSCD 北大核心 2013年第10期2846-2850,2944,共6页
真实网络流量包括大量特征属性,现有基于特征分析的异常流量检测方法无法满足高维特征分析要求。提出一种基于主成分分析和禁忌搜索(PCA-TS)的流量特征选择算法结合决策树分类的异常流量检测方法,通过PCA-TS对高维特征进行特征约减和近... 真实网络流量包括大量特征属性,现有基于特征分析的异常流量检测方法无法满足高维特征分析要求。提出一种基于主成分分析和禁忌搜索(PCA-TS)的流量特征选择算法结合决策树分类的异常流量检测方法,通过PCA-TS对高维特征进行特征约减和近优特征子集选择,为决策树分类方法提供有效的低维特征属性,结合决策树分类精度和处理效率高的优点,采用半监督学习方式进行异常流量实时检测。实验表明,与传统异常检测方法相比,此方法具有更高的检测精度和更低的误检率,其检测性能受样本规模影响较小,且对未知异常可以进行有效检测。 展开更多
关键词 异常检测 决策树 特征选择 主成分分析 禁忌搜索
在线阅读 下载PDF
基于声发射信号的带材剪切刀具磨损在线监测方法 被引量:4
4
作者 李令 阎秋生 +1 位作者 李锴 朱超睿 《机电工程》 CAS 北大核心 2023年第7期1102-1111,共10页
在铁基纳米晶合金带材剪切加工过程中,其刀具的状态对于保证加工质量至关重要。针对铁基纳米晶合金带材剪切加工过程中的刀具磨损状态监测问题,提出了一种基于声发射信号的剪切刀具磨损在线监测方法。首先,通过搭建声发射监测设备确定... 在铁基纳米晶合金带材剪切加工过程中,其刀具的状态对于保证加工质量至关重要。针对铁基纳米晶合金带材剪切加工过程中的刀具磨损状态监测问题,提出了一种基于声发射信号的剪切刀具磨损在线监测方法。首先,通过搭建声发射监测设备确定了相应的参数,采集原始声发射信号进行了预处理,得到了剪切加工阶段的信号,将其用于后续处理;然后,分析了剪切刀具磨损以及带材质量随剪切加工过程变化的关系,并根据剪切加工过程中获取的声发射信号,进行了时域、频域、时频域特征提取,分析了获得的特征与刀具磨损之间的关系,利用ReliefF和主成分分析(PCA)算法进行了特征选择与降维处理,得到了具有良好相关性的特征;最后,基于所选特征,构建了支持向量机(SVM)人工智能模型,用以识别剪切刀具的磨损阶段。研究结果表明:随着刀具磨损的加剧,带材质量下降,声发射信号特征值与刀具磨损存在对应关系;采用ReliefF-PCA-SVM模型能够实现95.56%的分类准确率,能够有效地对剪切加工过程中的刀具磨损进行在线监测。 展开更多
关键词 声发射监测设备 铁基纳米晶合金 特征选择与降维 主成分分析 支持向量机 RELIEFF算法
在线阅读 下载PDF
基于维度融合与SSA-LSTM的机翼结冰检测 被引量:1
5
作者 聂福印 李强 +1 位作者 黄秋凤 黄玲琳 《传感器与微系统》 CSCD 北大核心 2022年第6期118-121,共4页
高海拔、低温作业下的风电机组常伴有机翼结冰现象。针对风机数据纬度高,传统模型无法挖掘数据间时序关系、收敛速度慢、预测精度低等问题,提出一种基于维度融合优化与长短期记忆(LSTM)网络的结冰检测模型。结合特征消减算法筛选建模特... 高海拔、低温作业下的风电机组常伴有机翼结冰现象。针对风机数据纬度高,传统模型无法挖掘数据间时序关系、收敛速度慢、预测精度低等问题,提出一种基于维度融合优化与长短期记忆(LSTM)网络的结冰检测模型。结合特征消减算法筛选建模特征,通过主成分分析(PCA)降低数据耦合性并引入改进的麻雀搜索算法(ISSA)建立长短期记忆网络结冰检测模型。实验验证,维度融合与改进麻雀搜索算法优化的结冰检测模型判决准确率得到较好的改善,平均具有99.85%的判决准确率。 展开更多
关键词 结冰检测 特征消减 主成分分析 麻雀搜索算法 长短期记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部