Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
Preparation of TiO<sub>2</sub> thin films by MOCVD method is presented in this paper. A MOCVD system has been designed and built. A wide range of processing conditions are investigated to deposit TiO<su...Preparation of TiO<sub>2</sub> thin films by MOCVD method is presented in this paper. A MOCVD system has been designed and built. A wide range of processing conditions are investigated to deposit TiO<sub>2</sub> films on Si wafers starting from metal-organic precursor tetrabutyl titanate. Activation energy of the film formation (E) is obtained to be 23.6 kJ/mol. Structure of films is pure anatase when deposit temperatures are low, rutile forms at 700℃. The films also exhibit preferred crystallographic orientations which strongly depend on deposit conditions. Refractive index increases with increasing of film thickness and decreasing of deposit temperature.展开更多
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit...PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.展开更多
The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morph...The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.展开更多
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical perf...A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively.展开更多
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
文摘Preparation of TiO<sub>2</sub> thin films by MOCVD method is presented in this paper. A MOCVD system has been designed and built. A wide range of processing conditions are investigated to deposit TiO<sub>2</sub> films on Si wafers starting from metal-organic precursor tetrabutyl titanate. Activation energy of the film formation (E) is obtained to be 23.6 kJ/mol. Structure of films is pure anatase when deposit temperatures are low, rutile forms at 700℃. The films also exhibit preferred crystallographic orientations which strongly depend on deposit conditions. Refractive index increases with increasing of film thickness and decreasing of deposit temperature.
文摘PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.
基金Projects(21171027,50872014) supported by the National Natural Science Foundation of ChinaProject(K1001020-11)supported by the Science and Technology Key Project of Changsha City,China
文摘The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.
基金Project(50571091) supported by the National Natural Science Foundation of ChinaProject(09C947) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively.