Rechargeable aqueous zinc iodine(ZnǀǀI_(2))batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode,iodine cathode and aqueous electrolytes.Whereas,on ...Rechargeable aqueous zinc iodine(ZnǀǀI_(2))batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode,iodine cathode and aqueous electrolytes.Whereas,on one hand,the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides,deficient iodine utilization and sluggish reaction kinetics.On the other hand,the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density.Here,we propose a“confinement-catalysis”host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host,which can effectively confine and catalytically convert I_(2)/I^(−)couple and polyiodide intermediates.Consequently,the cathode enables the high capacity of 188.2 mAh g^(−1)at 0.3 A g^(−1),excellent rate capability with a capacity of 139.6 mAh g^(−1)delivered at high current density of 15 A g^(−1)and ultra-long cyclic stability over 50,000 cycles with 80.5%initial capacity retained under high iodine loading of 76.72 wt%.Furthermore,the electrocatalytic host can also accelerate the I^(+)↔I_(2)conversion.The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I−/I_(2)and I_(2)/I^(+)couples,and polyiodide intermediates conversions.展开更多
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat...Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.展开更多
基金supported by the National Key Research and Development Project(2020YFC1521900 and 2020YFC1521904)the Shaanxi Provincial Science Foundation(2021GXLH-01-11)+1 种基金We would also like to thank National Natural Science Foundation of China(52202299)Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘Rechargeable aqueous zinc iodine(ZnǀǀI_(2))batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode,iodine cathode and aqueous electrolytes.Whereas,on one hand,the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides,deficient iodine utilization and sluggish reaction kinetics.On the other hand,the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density.Here,we propose a“confinement-catalysis”host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host,which can effectively confine and catalytically convert I_(2)/I^(−)couple and polyiodide intermediates.Consequently,the cathode enables the high capacity of 188.2 mAh g^(−1)at 0.3 A g^(−1),excellent rate capability with a capacity of 139.6 mAh g^(−1)delivered at high current density of 15 A g^(−1)and ultra-long cyclic stability over 50,000 cycles with 80.5%initial capacity retained under high iodine loading of 76.72 wt%.Furthermore,the electrocatalytic host can also accelerate the I^(+)↔I_(2)conversion.The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I−/I_(2)and I_(2)/I^(+)couples,and polyiodide intermediates conversions.
基金financially supported by the National Key R&D Program of China(2022YFB4004100)the National Natural Science Foundation of China(22272161)+6 种基金the Jilin Province Science and Technology Development Program(20230101367JC)financially supported by the National Natural Science Foundation of China(22073094)the Science and Technology Development Program of Jilin Province(20210402059GH)the Science and Technology Plan Projects of Yunnan Province(202101BC070001–007)the Major Science and Technology Projects for Independent Innovation of China FAW Group Co.,Ltd(20220301018GX)the essential support of the Network and Computing Center,CIAC,CASthe Computing Center of Jilin Province。
文摘Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.